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Abstract

Benzo(a)pyrene (B(a)P) is the major cause of hepato-renal carcinogenesis. Apigenin in Plectranthus amboinicus (EPA), has indicated
some biological activities such as antioxidant and antimutagenic activity. The aim of this study is to investigate the potential of apigenin
in EPA as anti-cancer against chronic hepatorenal damage exposed to B(a)P. The rats of 4 groups (n=6) were divided as follows: Group I
(PO) was given food and water ad-libitum; Group II (PB) was administered orally B(a)P 2 mg/kg BW; Group III (PB+E) received orally
B(a)P 2 mg/kg BW and EPA 500 mg/kg; Group IV (PE) was administered orally EPA 500 mg/kg BW. The therapeutic effect of EPA was
explored using network pharmacology and molecular docking. The results showed that Group III could significantly improve (P < 0.05)
the hepatorenal function parameter, including DNA concentration. SGPT, SGOT, blood urea nitrogen, and creatinine compared to those
treated with B(a)P. The outcome data pharmacology revealed 6 targets could be the main core target. The good binding affinity indicated
Apigenin docked to AKT1 protein with -10.00 kcal/mol relevant to Doxorubicin as control drug. Our results provide a new insight of
apigenin in EPA potentially suppressing the regulation of chemical carcinogenesis by B(a)P.
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INTRODUCTION that the BPDE-DNA adducts promote the production of
oxidative stress in human renal cells (J. Chen et al.,
2023). DNA methyltransferase 1 (DNMT1) is inhibited
by B[a]P that resulted the DNA hypermethylation in
tumor development (Hoff et al., 2023; D. Sun et al.,
2022; Wang et al., 2024).

Despite  several treatments for hepato-renal
carcinogenesis have been investigated, the percentage of
mortality is higher (Sinaga et al., 2023). The
pharmacological modern analysis, such as network

Benzo(a)pyrene (B[a]P) is a class I carcinogen found in
tobacco, contaminated water, and high temperature
processed food (Arifin et al., 2022). The xenobiotic
compound from Polycyclic aromatic hydrocarbons
(PAH) potentially tends to be a marker for genotoxic and
carcinogenic development (Saputro et al., 2021). Liver
and kidney are the crucial target responded to B(a)P
toxicant. Metabolic homeostasis interfered by B(a)P

exposure could generate the ferroptosis in cell death and pharmacology and molecular docking, had been
kidney dysfunction (H. Chen et al., 2025; Gong et al.,  employed previously to understand the biological
2025; Hao et al., 2024; Shaoyong et al., 2023; Zhang et ,ctivities of active compounds against numerous

al, 2025). The B(a)P oxidation is catalyzed by diseases. The research of phytocompounds effectively

cytochrome P45 to result dihydrodiol, epoxides, and
dihydrodiol epoxides in liver (Ahamed et al., 2023; Zhao
et al., 2024). It bound covalently to DNA, for example
N- amino guanine and a phosphate group from nucleic
acid (Feng et al., 2022). Besides, this alteration of DNA
structure accumulated the production of 7,8-dihydroxy-
9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE)
as an important key for the initiate cell mutagenesis
(Gerhards et al., 2023). The previous research suggested

could determine the molecular mechanism pathway as a
promising new treatment (Jadhav et al., 2025; Liang et
al., 2024).

In recent years, chemotherapeutic natural compound
tends to be a promiscuous treatment of hepato-renal
carcinogenesis (Scaria et al, 2020). Plectranthus
amboinicus is an edible plant from family Lamiaceae
(Slusarczyk et al., 2021). The herbal medication was
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applied for various treatment purpose such as cough,
nasal  congestion, bronchitis, hepatopathy, and
rheumatism (Stasinska-Jakubas et al., 2023). Apigenin is
a dietary flavonoid compound found abundantly
approximately 2.3 ng/ul in P. amboinicus (Silitonga et
al., 2015). The pharmacological properties of apigenin
have anti-apoptotic (Mahbub et al., 2022), pro-oxidation
properties (Warkad et al, 2021), inhibitor tumour
proliferation, anti-genotoxic, hepato-renal protective
(Singh et al., 2022), antioxidant, and anti-inflammatory
(Kashyap et al., 2018). However, there is limited data
about the role and mechanism of apigenin in EPA to treat
hepatorenal carcinogenesis.

The aim of this study was to validate the potential of
Apigenin in Plectranthus amboinicus by identifying
DNA concentration, hepatorenal functional and
discovering system pharmacology and molecular
interaction for the development of cancer treatment. We
suggest DNA fragmentation and hepato-renal functional
parameter to estimate the significant factors damaged by
toxic chemical in rats induced B(a)P (Akintunde et al.,
2020; Sugawara et al., 2022). Additionally, our studies
also predict the potential apigenin against hepatorenal
cancer by pharmacological modern approaches, such as
network pharmacology and molecular docking study.
This method is a very effective methodology to
demonstrate the pathway of cancer treatment with less
toxicity and adverse side effect (J.-J. Chen et al., 2021).

MATERIALS AND METHODS

Preparation of Plant Material.

Plectranthus amboinicus were obtained from North
Tapanuli, North Sumatra- Indonesia (Specimen number:
UNIMEDO082022). The sample was air-dried for 7 days,
powdered into 1000 g, and extracted with 96 % ethanol.
The extraction was soaked for 5 days and stirred two
times a day. The extracts were filtered by Whatman filter
paper and concentrated by using a rotary evaporator,
following the previous maceration method (Silitonga et
al., 2018).

Animal and Experimental Design

The scientific procedures were approved by the State
University of Medan Ethics Committee (ID: 0453/EPH-
FMIPA/2019). The current experiments were based on
the World Medical Association (WMA) statement on
Animal Use in Biomedical Research and EU Directive
2010/63/EU. Twenty- four male Wistar rats (aged 8
weeks) were obtained from Pharmacy Laboratories USU,
Indonesia. Animals were acclimatized in a temperature —
controlled animal (22+20C) for seven days and were
given free access to feed and water ad-libitum at Biology
Laboratories UNIMED, Indonesia. The experimental
animals were treated for twenty- two days and divided to
four groups (six rats per group); Group I (P0) received
food and water ad-libitum as a control group; Group II
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(PB) administered orally B(a)P 2 mg/kg BW; Group III
(PBE) received orally B(a)P 2 mg/kg BW and EPA 500
mg/kg; Group IV (PE) administered orally EPA 500
mg/kg BW. At the end of the experimental time (23
days), all the group animals were euthanized. The blood
sample was taken from cardiac puncture and put into the
Eppendorf tube with EDTA anticoagulant. Serum was
separated by centrifugation at 3000 rpm for 5 minutes.
The liver and kidneys were washed in ice-cold normal
saline solution and kept for further DNA concentration.

DNA Fragmentation assay

The cell of the sample was isolated from blood, liver, and
kidney tissues. The procedure was adapted by following
Manual Instruction Kit Geneaid gSYNCTM Ver.
02.10.17, consist of tissue dissociation, cell lysis, DNA
binding, washed and elution. Then, the DNA was
isolated from the cell lysates and quantified by using UV
Spectrophotometric measurement at 260 nm (Soumya et
al., 2021).

Hepatorenal function analysis

Hepatorenal function parameters consist of SGPT
(Serum Glutamic Pyruvate Transaminase), SGOT
(Serum Glutamate Oxalate Transaminase), creatinine,
and blood uremic nitrogen value (Bokhary et al., 2022).
Serum solution (100 pl) was put into commercially
reagent kits 1000ul and incubated at 370 C for 5 minutes
(Aljarba et al., 2021). SGPT and SGOT were quantified
by a photometric method at 340 nm. Total protein assay
is measured using Creatinine kit test (CREA) and Blood
Urea Nitrogen kit (BUN) (Gwon et al., 2021).

Statistical analysis

The average data are presented as the mean + SD. The
significance between B(a)P treated and EPA treated
groups were evaluated by the Analysis of Variance
(ANOVA) method. The value P < 0.05 was considered
as statistically significant.

Bioinformatic studies

The String v _11.0 database and Cytoscape ver. 3.9.1
were used to develop a network between apigenin and
hepato-renal cancer genes. The settings for the network
were established and adapted with the organism “Homo
sapiens” and the confidence was set at 0.7 (Sinaga et al.,
2024). The nodes represented proteins and the edges
indicated the interaction protein. Furthermore, the node’s
colour was evaluated by the parameter betweenness
centrality to identify the genes which contributed in the
cancer pathway using the Cytoscape data. The biological
pathway was evaluated by STRING 11.5 database (L.
Sun et al., 2023).

The 3D structure of apigenin and doxorubicin as
control drugs in “sdf” format were obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Protein
AKT (PDB: 2UZW) was downloaded from RCSB
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(https://www.rcsb.org/). All apigenin, doxorubicin, and
protein were prepared to remove waters, ions, and
ligands, then optimized by the MMFF94D force field.
All of them were saved in “pdbqt” format. Molecular
docking study was conducted with AutoDock Vina
software (Khalil et al., 2022). The visualization was
displayed by using BIOVIA Discovery studio software.

RESULTS AND DISCUSSION

Results
B(a)P induces DNA damage in hepato-renal cells.
To evaluate the potential of ethanol extract of
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concentration in hepato-renal damage induced Bl[a]P.
The high levels of DNA concentration in renal tissue
have a significant (p<<0.05) augmented in renal tissues of
the B(a)P treated group compared to all the treatment
groups (Fig. 1a). After the administration of EPA, DNA
concentration could be normalized to the relevant with
the control group. The following result demonstrate the
DNA concentration value reduction (p<0.05) was shown
in the administration EPA groups compared to the B(a)P
treated group in liver tissues (Fig. 1b). Occurrence of
DNA damage was detected by UV spectrophotometer at
260 nm as biochemical signal of apoptosis in hepato-
renal cells at Fig. 1c, d.

Plectranthus  amboinicus, = we  assessed DNA
ng/ul ng/ul
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Figure 1. The effect of apigenin in P. amboinicus against hepato-renal carcinogenesis induced B(a)P; (a) DNA Concentration in renal; (b) DNA
Concentration in liver; (c) DNA fragmentation in renal; (d) DNA fragmentation in liver; (PO) the control group; (PB) B(a)P 2 mg/kg BW; (PBE) B(a)P 2

mg/kg BW + EPA 500 mg/kg; (PE) EPA 500 mg/kg BW. (n=6, "p < 0.05).

Evaluation of hepatorenal parameter in rats induced
B(a)P.

The average of SGOT and SGPT levels in the blood
serum of all groups is depicted in s. Our finding indicated
that B(a)P significantly increased SGPT and SGOT
levels as compared to the control group (P0). However,
the administration of EPA significantly reduced (p<0.05)
in comparison to the B(a)P treated group. We
hypothesized that creatinine and uremic were
significantly — higher after B(a)P administration
throughout the experimental period of 23 days. However,
the ethanolic extract of Plectranthus amboinicus
significantly alleviated (p<0.05) the creatinine and
uremic levels in the PBE group as compared to the B(a)P
treated group (Fig. 2¢, d).
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Bioinformatic studies.

The network pharmacology with confidence scores 0.4
was built. The 43 nodes and 389 edges were obtained and
6 intersecting targets of apigenin, for instance TP53,
AKTI, MTOR, CCNDI1, GGTI1, and ESRI, were
identified as the main protein which play an important
role in the cancer pathway (Fig. 3). The biological
processes of apigenin were shown in Table 1. We
observed the target involved in oncogenesis, consist of
P53 signaling pathway, PI3K-AKT signaling pathway,
positive regulation of chemical carcinogenesis by
Benzo(a)pyrene, TNF signaling pathway, HIF-1
signaling pathway, and FoxO signaling pathway.
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Figure 2. The therapeutic potential of apigenin in P. amboinicus against hepato-renal carcinogenesis induced B(a)P (a) SGPT and (b) SGOT levels; (c)
Ureum; (d) Creatinine (PO/K) the control group; (PB) B(a)P 2 mg/kg BW; (PBE) B(a)P 2 mg/kg BW + EPA 500 mg/kg; (PE) EPA 500 mg/kg BW. (n=6,

*p <0.05).
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Figure 3. The network pharmacology construction of Apigenin in P. amboinicus against hepato-renal carcinogenesis induced B[a]P. The higher degree

value is displayed by color ranging from dark to light.

Table 1. Biological Pathway of Apigenin in Plenctranthus amboinicus againts hepato-renal carcinogenesis

Pathway Pathway Count in False discovery
. e Gene

ID description gene set rate

5206 MicroRNAs in » CYPIBI, MDM2, CASP3, BRCAI, CDK6, ATM, CDKNIA, < ¢
cancer MTOR, CDKN2A, PTGS2, TP53, SIRT1, RPTOR, CCNDI e

4115 P53 signaling " MDM2, CDK6, CDK4, CCNB1, ATM, CDKNI1A, CASP3, L2516
pathway CDKN2A, TP53, CCND3, CCNDI :

. MDM2, CASP3, FOXO1, CDKN1A, CDK6, CDK4, AKT],

5200 Pathway in cancer 14 MTOR, CDKN2A, TGFB1, PTGS2, TP53, CCND1, MDM2 9-86c-14
FoxO signaling MDM?2, CCNBI, FOXO1, ATM, CDKN1A, AKT1, TGFBI,

4068 pathway 1 IL10, IL6, SIRT1, CCNDI 4.99¢-14
PIKAKL TP53, MTOR, CDK4, AKT1, CDKN1A, CDK6, BRCAL,

4151 et 16 MDMS2, IL2, IL6, CCDN3, CCND1, RPTOR, EIF4EBPI, 3.34e-16
signaling pathway MLSTS, RPS6KB1

4210 Apoptosis 5 TP53, AKT1, TNF, CASP3, ATM 7.66e-06

4668 TNF signaling 6 TNF, PTGS2, CCL2, AKT1, CASP3, IL6 9.66¢-07
pathway

5204 Chemical 3 PTGS2, CYP1BI, UGT1Al 0.00214
carcinogenesis

4066 HIF-1 signaling ¢ CDKNIA, AKT1, MTOR, EIF4EBP1, RPS6KBI, IL6 8.46¢-07

pathway

The interaction between apigenin and the promising well as control drug anti-cancer that is doxorubicin at -
target were evaluated by molecular docking analysis. 12.20 kcal/mol in Table 2. Here, all the major binding
Apigenin could be a promising compound which bound results hydrophobic interaction and hydrogen bond at
to AKT1 with good binding affinity at -10.00 kcal/mol as  residue Val57, Lys72, Leu 173 represented in Fig. 4.

:12:

()
Figure 4. Molecular docking between (a) Apigenin; (b) Doxorubicin with Protein AKT1.




Silitonga et al. — The ameliorative effect of apigenin in Plectranthus amboinicus ...

Table 2. Binding affinity between the compounds and AKT1.

Compound fflil':ﬂlltl;fg .Hydrop!lobic Hydrogen
interaction bond
(keal/mol)
Leu49, Val57, Ly72,
Apigenin -10.00 Ala70, Leul73, Vall23,
Thr183 Aspl84
Thr51,
Doxorubicin  -12.20 Val57, Leul73 Lys72,
Aspl84
Discussion
The identification of ameliorative effect from

ethnomedicinal plants is needed to encourage anticancer
treatment for hepato-renal carcinogenesis with less side-
effect (Silitonga et al, 2024). However, some
chemotherapeutic and environmental agents elevated
hepato-renal enzyme activity, DNA fragments
destruction and abnormalities cell in the hepato-renal
cells (Meena et al., 2021). The high index of liver
damage, for instance SGPT and SGOT, are caused by the
reactive oxidative stress and free radicals (Ablat et al.,
2023). Furthermore, the role of renal is to maintain
plasma urine and creatinine clearance (Oto et al., 2020),
as an important indicator of renal function. In normal
renal cells, the markers are resulted from creatine
phosphate in the muscles and removed from the urine
(Bredahl et al., 2021). Hepato-renal carcinogenesis is
enhanced by B(a)P exposure (Lindsay Reed et al., 2020;
Wei-Sheng Lin et al., 2023). The therapeutic effect of
EPA against hepato-renal damage induced B(a)P is still
unclear. Therefore, our observation demonstrated that
EPA reduced hepatic and renal dysfunction parameters,
consisting of SGPT, SGOT, creatinine and urea, after 23
days exposure to B(a)P. This experimental data agrees to
the previous data that apigenin could be a potential
compound to prevent hepatic and renal damage in rats
exposed to xenobiotic compound (Owumi et al., 2022).
DNA damage exposure to B(a)P stimulated systematic
response by upregulated signaling pathways in
hepatorenal cells. Our finding is similar to the previous
research that the accumulation of B(a)P could damage
DNA in hepatorenal carcinogenesis (Yining Xiong et al.,
2021; Yunxia Han et al.,, 2023). Within the limits of
variability of our data, the DNA improvement appeared
more obvious in the PBE group. Additionally, B(a)P
induction results in DNA damage trigger accumulation of
p53 and release caspase-3 cleavage. This is in line with
previous result that mitochondrial apoptotic cell death
triggered by p53 activation in phenylpropene
methyleugenol (ME)-exposure DNA adducts (Carlsson et
al., 2022). The accumulation of B(a)P destructed DNA
fragment, particularly hepato -renal, by decreasing gene
expression (Garaycoechea et al., 2023; Holmes & Winn,
2022).

We predict a comprehensive approach integrated
protein-protein interaction and docking study to
investigate mechanism apigenin against B(a)P caused
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hepatorenal cancer. We discovered that Benzo(a)pyrene
tends to play a positive role in chemical carcinogen
signaling (Vermillion Maier et al., 2023), which is
involved in oxidative stress (Song & Choi, 2021),
inflammation (Wu et al., 2022), and apoptosis pathway
(Barangi et al., 2020). This result is similar to the
previous observation which investigated mechanism of
the active compound against B(a)P induced hepatorenal
injury (Ge et al., 2022). The main target of apigenin and
B(a)P interaction were discovered, including TP53,
AKT1, MTOR, CCNDI1, GGTI1, and ESR1. All the
targets are significantly relevant in the progression and
metastatic hepato-renal cancer. AKT1 is an important
protein target associated in apoptosis cells (G. Sun et al.,
2020), TNF signaling pathway (Lee et al., 2022), and
carcinogen pathway (Yassin et al., 2022). Apigenin has
been contributed in modulating the expression of AKT
proteins. Apigenin exhibited the protective effects to
AKT phosphorylation through disruption of the ATP
binding domain in PI3K and activation of mTORC2
complex (Javed et al., 2021). Additionally, Apigenin has
a protective property against cancer in rat model through
PI3K/Akt/mTOR signaling pathway (Yang et al., 2018).
Our finding suggests a new insight into the anti-cancer
activity of apigenin in hepatorenal cancer.

CONCLUSION

In conclusion, our results verify that the potential of EPA
tends to be anti- cancer activity by preventing hepato-
renal damage in B(a)P exposure. The outcome result
indicated that SGPT and SGOT significantly reduced
(p<0.05) in EPA Groups compared to the B(a)P treated
group. The creatinine and uremic levels significantly
restored in the PBE group after B(a)P exposure.
Furthermore, DNA concentration reduction (p<0.05) was
shown in the administration EPA groups compared to the
B(a)P treated group in liver and renal tissues. Our work
also reports apigenin of EPA could potentially suppress
hepato-renal cancer activity to the protein target, such as
TP53, AKT1, MTOR, CCNDI1, GGT1, and ESRI.
Further investigation of the present study, the
combination treatments of EPA with doxorubicin at a
dose of 0.5 mg/kg are needed to develop a promising
therapeutic for cancer.
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