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Abstract 

 

Benzo(a)pyrene (B(a)P) is the major cause of hepato-renal carcinogenesis. Apigenin in Plectranthus amboinicus (EPA), has indicated 

some biological activities such as antioxidant and antimutagenic activity. The aim of this study is to investigate the potential of apigenin 

in EPA as anti-cancer against chronic hepatorenal damage exposed to B(a)P. The rats of 4 groups (n=6) were divided as follows: Group I 

(P0) was given food and water ad-libitum; Group II (PB) was administered orally B(a)P 2 mg/kg BW; Group III (PB+E) received orally 

B(a)P 2 mg/kg BW and EPA 500 mg/kg; Group IV (PE) was administered orally EPA 500 mg/kg BW. The therapeutic effect of EPA was 

explored using network pharmacology and molecular docking. The results showed that Group III could significantly improve (P < 0.05) 

the hepatorenal function parameter, including DNA concentration. SGPT, SGOT, blood urea nitrogen, and creatinine compared to those 

treated with B(a)P. The outcome data pharmacology revealed 6 targets could be the main core target. The good binding affinity indicated 

Apigenin docked to AKT1 protein with -10.00 kcal/mol relevant to Doxorubicin as control drug. Our results provide a new insight of 

apigenin in EPA potentially suppressing the regulation of chemical carcinogenesis by B(a)P. 
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INTRODUCTION 
 

Benzo(a)pyrene (B[a]P) is a class I carcinogen found in 

tobacco, contaminated water, and high temperature 

processed food (Arifin et al., 2022). The xenobiotic 

compound from Polycyclic aromatic hydrocarbons 

(PAH) potentially tends to be a marker for genotoxic and 

carcinogenic development (Saputro et al., 2021). Liver 

and kidney are the crucial target responded to B(a)P 

toxicant. Metabolic homeostasis interfered by B(a)P 

exposure could generate the ferroptosis in cell death and 

kidney dysfunction (H. Chen et al., 2025; Gong et al., 

2025; Hao et al., 2024; Shaoyong et al., 2023; Zhang et 

al., 2025). The B(a)P oxidation is catalyzed by 

cytochrome P45 to result dihydrodiol, epoxides, and 

dihydrodiol epoxides in liver (Ahamed et al., 2023; Zhao 

et al., 2024). It bound covalently to DNA, for example 

N- amino guanine and a phosphate group from nucleic 

acid (Feng et al., 2022). Besides, this alteration of DNA 
structure accumulated the production of 7,8-dihydroxy-

9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) 

as an important key for the initiate cell mutagenesis 

(Gerhards et al., 2023). The previous research suggested 

that the BPDE-DNA adducts promote the production of 

oxidative stress in human renal cells (J. Chen et al., 

2023). DNA methyltransferase 1 (DNMT1) is inhibited 

by B[a]P that resulted the DNA hypermethylation in 

tumor development (Hoff et al., 2023; D. Sun et al., 

2022; Wang et al., 2024). 

Despite several treatments for hepato-renal 

carcinogenesis have been investigated, the percentage of 

mortality is higher (Sinaga et al., 2023). The 

pharmacological modern analysis, such as network 

pharmacology and molecular docking, had been 

employed previously to understand the biological 

activities of active compounds against numerous 

diseases. The research of phytocompounds effectively 

could determine the molecular mechanism pathway as a 

promising new treatment (Jadhav et al., 2025; Liang et 

al., 2024). 

In recent years, chemotherapeutic natural compound 

tends to be a promiscuous treatment of hepato-renal 
carcinogenesis (Scaria et al., 2020). Plectranthus 

amboinicus is an edible plant from family Lamiaceae 

(Ślusarczyk et al., 2021). The herbal medication was 
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applied for various treatment purpose such as cough, 

nasal congestion, bronchitis, hepatopathy, and 

rheumatism (Stasińska-Jakubas et al., 2023). Apigenin is 

a dietary flavonoid compound found abundantly 

approximately 2.3 ng/µl in P. amboinicus (Silitonga et 

al., 2015). The pharmacological properties of apigenin 

have anti-apoptotic (Mahbub et al., 2022), pro-oxidation 

properties (Warkad et al., 2021), inhibitor tumour 

proliferation, anti-genotoxic, hepato-renal protective 

(Singh et al., 2022), antioxidant, and anti-inflammatory 

(Kashyap et al., 2018). However, there is limited data 

about the role and mechanism of apigenin in EPA to treat 

hepatorenal carcinogenesis.  

The aim of this study was to validate the potential of 

Apigenin in Plectranthus amboinicus by identifying 

DNA concentration, hepatorenal functional and 

discovering system pharmacology and molecular 

interaction for the development of cancer treatment. We 

suggest DNA fragmentation and hepato-renal functional 

parameter to estimate the significant factors damaged by 

toxic chemical in rats induced B(a)P (Akintunde et al., 

2020; Sugawara et al., 2022). Additionally, our studies 

also predict the potential apigenin against hepatorenal 

cancer by pharmacological modern approaches, such as 

network pharmacology and molecular docking study. 

This method is a very effective methodology to 

demonstrate the pathway of cancer treatment with less 

toxicity and adverse side effect (J.-J. Chen et al., 2021). 

 

 

MATERIALS AND METHODS 
 

Preparation of Plant Material. 

Plectranthus amboinicus were obtained from North 

Tapanuli, North Sumatra- Indonesia (Specimen number: 

UNIMED082022). The sample was air-dried for 7 days, 

powdered into 1000 g, and extracted with 96 % ethanol. 

The extraction was soaked for 5 days and stirred two 

times a day. The extracts were filtered by Whatman filter 

paper and concentrated by using a rotary evaporator, 

following the previous maceration method (Silitonga et 

al., 2018). 

 

Animal and Experimental Design 

The scientific procedures were approved by the State 

University of Medan Ethics Committee (ID: 0453/EPH-

FMIPA/2019). The current experiments were based on 

the World Medical Association (WMA) statement on 

Animal Use in Biomedical Research and EU Directive 

2010/63/EU. Twenty- four male Wistar rats (aged 8 

weeks) were obtained from Pharmacy Laboratories USU, 

Indonesia. Animals were acclimatized in a temperature – 

controlled animal (22±20C) for seven days and were 

given free access to feed and water ad-libitum at Biology 

Laboratories UNIMED, Indonesia. The experimental 

animals were treated for twenty- two days and divided to 

four groups (six rats per group); Group I (P0) received 

food and water ad-libitum as a control group; Group II 

(PB) administered orally B(a)P 2 mg/kg BW; Group III 

(PBE) received orally B(a)P 2 mg/kg BW and EPA 500 

mg/kg; Group IV (PE) administered orally EPA 500 

mg/kg BW. At the end of the experimental time (23 

days), all the group animals were euthanized. The blood 

sample was taken from cardiac puncture and put into the 

Eppendorf tube with EDTA anticoagulant. Serum was 

separated by centrifugation at 3000 rpm for 5 minutes. 

The liver and kidneys were washed in ice-cold normal 

saline solution and kept for further DNA concentration. 

 

DNA Fragmentation assay 

The cell of the sample was isolated from blood, liver, and 

kidney tissues. The procedure was adapted by following 

Manual Instruction Kit Geneaid gSYNCTM Ver. 

02.10.17, consist of tissue dissociation, cell lysis, DNA 

binding, washed and elution. Then, the DNA was 

isolated from the cell lysates and quantified by using UV 

Spectrophotometric measurement at 260 nm (Soumya et 

al., 2021).  

 

Hepatorenal function analysis 

Hepatorenal function parameters consist of SGPT 

(Serum Glutamic Pyruvate Transaminase), SGOT 

(Serum Glutamate Oxalate Transaminase), creatinine, 

and blood uremic nitrogen value (Bokhary et al., 2022). 

Serum solution (100 µl) was put into commercially 

reagent kits 1000µl and incubated at 370 C for 5 minutes 

(Aljarba et al., 2021). SGPT and SGOT were quantified 

by a photometric method at 340 nm. Total protein assay 

is measured using Creatinine kit test (CREA) and Blood 

Urea Nitrogen kit (BUN) (Gwon et al., 2021). 

 

Statistical analysis 

The average data are presented as the mean ± SD. The 

significance between B(a)P treated and EPA treated 

groups were evaluated by the Analysis of Variance 

(ANOVA) method. The value P < 0.05 was considered 

as statistically significant. 

 

Bioinformatic studies 

The String v_11.0 database and Cytoscape ver. 3.9.1 

were used to develop a network between apigenin and 

hepato-renal cancer genes. The settings for the network 

were established and adapted with the organism “Homo 

sapiens” and the confidence was set at 0.7 (Sinaga et al., 

2024). The nodes represented proteins and the edges 

indicated the interaction protein. Furthermore, the node’s 

colour was evaluated by the parameter betweenness 

centrality to identify the genes which contributed in the 

cancer pathway using the Cytoscape data. The biological 

pathway was evaluated by STRING 11.5 database (L. 

Sun et al., 2023). 

The 3D structure of apigenin and doxorubicin as 

control drugs in “sdf” format were obtained from 

PubChem (https://pubchem.ncbi.nlm.nih.gov/). Protein 

AKT (PDB: 2UZW) was downloaded from RCSB 
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(https://www.rcsb.org/). All apigenin, doxorubicin, and 

protein were prepared to remove waters, ions, and 

ligands, then optimized by the MMFF94D force field. 

All of them were saved in “pdbqt” format. Molecular 

docking study was conducted with AutoDock Vina 

software (Khalil et al., 2022). The visualization was 

displayed by using BIOVIA Discovery studio software. 

 

 

RESULTS AND DISCUSSION 
 

Results 

B(a)P induces DNA damage in hepato-renal cells.  

To evaluate the potential of ethanol extract of 

Plectranthus amboinicus, we assessed DNA 

concentration in hepato-renal damage induced B[a]P. 

The high levels of DNA concentration in renal tissue 

have a significant (p<0.05) augmented in renal tissues of 

the B(a)P treated group compared to all the treatment 

groups (Fig. 1a). After the administration of EPA, DNA 

concentration could be normalized to the relevant with 

the control group. The following result demonstrate the 

DNA concentration value reduction (p<0.05) was shown 

in the administration EPA groups compared to the B(a)P 

treated group in liver tissues (Fig. 1b). Occurrence of 

DNA damage was detected by UV spectrophotometer at 

260 nm as biochemical signal of apoptosis in hepato-

renal cells at Fig. 1c, d. 

 

 

 

 

 
Figure 1. The effect of apigenin in P. amboinicus against hepato-renal carcinogenesis induced B(a)P; (a) DNA Concentration in renal; (b) DNA 
Concentration in liver; (c) DNA fragmentation in renal; (d) DNA fragmentation in liver; (P0) the control group; (PB) B(a)P 2 mg/kg BW; (PBE) B(a)P 2 

mg/kg BW + EPA 500 mg/kg; (PE) EPA 500 mg/kg BW.  (n=6, *p < 0.05). 

 
 

Evaluation of hepatorenal parameter in rats induced 

B(a)P.  

The average of SGOT and SGPT levels in the blood 

serum of all groups is depicted in s. Our finding indicated 

that B(a)P significantly increased SGPT and SGOT 

levels as compared to the control group (P0). However, 

the administration of EPA significantly reduced (p<0.05) 

in comparison to the B(a)P treated group. We 

hypothesized that creatinine and uremic were 

significantly higher after B(a)P administration 

throughout the experimental period of 23 days. However, 

the ethanolic extract of Plectranthus amboinicus 

significantly alleviated (p<0.05) the creatinine and 

uremic levels in the PBE group as compared to the B(a)P 

treated group (Fig. 2c, d). 

Bioinformatic studies.  

The network pharmacology with confidence scores 0.4 

was built. The 43 nodes and 389 edges were obtained and 

6 intersecting targets of apigenin, for instance TP53, 

AKT1, MTOR, CCND1, GGT1, and ESR1, were 

identified as the main protein which play an important 

role in the cancer pathway (Fig. 3). The biological 

processes of apigenin were shown in Table 1. We 

observed the target involved in oncogenesis, consist of 

P53 signaling pathway, PI3K-AKT signaling pathway, 

positive regulation of chemical carcinogenesis by 

Benzo(a)pyrene, TNF signaling pathway, HIF-1 

signaling pathway, and FoxO signaling pathway. 

 

 

 
Figure 2. The therapeutic potential of apigenin in P. amboinicus against hepato-renal carcinogenesis induced B(a)P (a) SGPT and (b) SGOT levels; (c) 
Ureum; (d) Creatinine (P0/K) the control group; (PB) B(a)P 2 mg/kg BW; (PBE) B(a)P 2 mg/kg BW + EPA 500 mg/kg; (PE) EPA 500 mg/kg BW.  (n=6, 
*p < 0.05). 
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Figure 3. The network pharmacology construction of Apigenin in P. amboinicus against hepato-renal carcinogenesis induced B[a]P. The higher degree 

value is displayed by color ranging from dark to light. 
 

 
Table 1. Biological Pathway of Apigenin in Plenctranthus amboinicus againts hepato-renal carcinogenesis 
 

Pathway 

ID 

Pathway 

description 

Count in 

gene set 
Gene 

False discovery 

rate 

5206 
MicroRNAs in 

cancer 
14 

CYP1B1, MDM2, CASP3, BRCA1, CDK6, ATM, CDKN1A, 

MTOR, CDKN2A, PTGS2, TP53, SIRT1, RPTOR, CCND1 
6.56e-18 

4115 
P53 signaling 

pathway 
11 

MDM2, CDK6, CDK4, CCNB1, ATM, CDKN1A, CASP3, 

CDKN2A, TP53, CCND3, CCND1 
1.25e-16 

5200 Pathway in cancer 14 
MDM2, CASP3, FOXO1, CDKN1A, CDK6, CDK4, AKT1, 

MTOR, CDKN2A, TGFB1, PTGS2, TP53, CCND1, MDM2 
9.86e-14 

4068 
FoxO signaling 

pathway 
11 

MDM2, CCNB1, FOXO1, ATM, CDKN1A, AKT1, TGFB1, 

IL10, IL6, SIRT1, CCND1 
4.99e-14 

4151 
PI3K-Akt 

signaling pathway 
16 

TP53, MTOR, CDK4, AKT1, CDKN1A, CDK6, BRCA1, 

MDM2, IL2, IL6, CCDN3, CCND1, RPTOR, EIF4EBP1, 

MLST8, RPS6KB1 

3.34e-16 

4210 Apoptosis 5 TP53, AKT1, TNF, CASP3, ATM 7.66e-06 

4668 
TNF signaling 

pathway 
6 TNF, PTGS2, CCL2, AKT1, CASP3, IL6 9.66e-07 

5204 
Chemical 

carcinogenesis 
3 PTGS2, CYP1B1, UGT1A1 0.00214 

4066 
HIF-1 signaling 

pathway 
6 CDKN1A, AKT1, MTOR, EIF4EBP1, RPS6KB1, IL6 8.46e-07 

 

 

The interaction between apigenin and the promising 

target were evaluated by molecular docking analysis. 

Apigenin could be a promising compound which bound 

to AKT1 with good binding affinity at -10.00 kcal/mol as 

well as control drug anti-cancer that is doxorubicin at -

12.20 kcal/mol in Table 2. Here, all the major binding 

results hydrophobic interaction and hydrogen bond at 

residue Val57, Lys72, Leu 173 represented in Fig. 4. 

 

 
Figure 4. Molecular docking between (a) Apigenin; (b) Doxorubicin with Protein AKT1. 
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Table 2. Binding affinity between the compounds and AKT1. 

 

Compound 

Binding 

affinity 

(kcal/mol) 

Hydrophobic 

interaction 

Hydrogen 

bond 

Apigenin -10.00 

Leu49, Val57, 

Ala70, Leu173, 

Thr183 

Ly72, 

Val123, 

Asp184 

Doxorubicin -12.20 Val57, Leu173 

Thr51, 

Lys72, 

Asp184 

 

Discussion 

The identification of ameliorative effect from 

ethnomedicinal plants is needed to encourage anticancer 

treatment for hepato-renal carcinogenesis with less side-

effect (Silitonga et al., 2024). However, some 

chemotherapeutic and environmental agents elevated 

hepato-renal enzyme activity, DNA fragments 

destruction and abnormalities cell in the hepato-renal 

cells (Meena et al., 2021). The high index of liver 

damage, for instance SGPT and SGOT, are caused by the 

reactive oxidative stress and free radicals (Ablat et al., 

2023). Furthermore, the role of renal is to maintain 

plasma urine and creatinine clearance (Oto et al., 2020), 

as an important indicator of renal function. In normal 

renal cells, the markers are resulted from creatine 

phosphate in the muscles and removed from the urine 

(Bredahl et al., 2021). Hepato-renal carcinogenesis is 

enhanced by B(a)P exposure (Lindsay Reed et al., 2020; 

Wei-Sheng Lin et al., 2023). The therapeutic effect of 

EPA against hepato-renal damage induced B(a)P is still 

unclear. Therefore, our observation demonstrated that 

EPA reduced hepatic and renal dysfunction parameters, 

consisting of SGPT, SGOT, creatinine and urea, after 23 

days exposure to B(a)P. This experimental data agrees to 

the previous data that apigenin could be a potential 

compound to prevent hepatic and renal damage in rats 

exposed to xenobiotic compound (Owumi et al., 2022). 

DNA damage exposure to B(a)P stimulated systematic 

response by upregulated signaling pathways in 

hepatorenal cells. Our finding is similar to the previous 

research that the accumulation of B(a)P could damage 

DNA in hepatorenal carcinogenesis (Yining Xiong et al., 

2021; Yunxia Han et al., 2023). Within the limits of 

variability of our data, the DNA improvement appeared 

more obvious in the PBE group. Additionally, B(a)P 

induction results in DNA damage trigger accumulation of 

p53 and release caspase-3 cleavage. This is in line with 

previous result that mitochondrial apoptotic cell death 

triggered by p53 activation in phenylpropene 

methyleugenol (ME)-exposure DNA adducts (Carlsson et 

al., 2022). The accumulation of B(a)P destructed DNA 

fragment, particularly hepato -renal, by decreasing gene 

expression (Garaycoechea et al., 2023; Holmes & Winn, 

2022).  
We predict a comprehensive approach integrated 

protein-protein interaction and docking study to 

investigate mechanism apigenin against B(a)P caused 

hepatorenal cancer. We discovered that Benzo(a)pyrene 

tends to play a positive role in chemical carcinogen 

signaling (Vermillion Maier et al., 2023), which is 

involved in oxidative stress (Song & Choi, 2021), 

inflammation (Wu et al., 2022), and apoptosis pathway 

(Barangi et al., 2020). This result is similar to the 

previous observation which investigated mechanism of 

the active compound against B(a)P induced hepatorenal 

injury (Ge et al., 2022). The main target of apigenin and 

B(a)P interaction were discovered, including TP53, 

AKT1, MTOR, CCND1, GGT1, and ESR1. All the 

targets are significantly relevant in the progression and 

metastatic hepato-renal cancer. AKT1 is an important 

protein target associated in apoptosis cells (G. Sun et al., 

2020), TNF signaling pathway (Lee et al., 2022), and 

carcinogen pathway (Yassin et al., 2022). Apigenin has 

been contributed in modulating the expression of AKT 

proteins. Apigenin exhibited the protective effects to 

AkT phosphorylation through disruption of the ATP 

binding domain in PI3K and activation of mTORC2 

complex (Javed et al., 2021). Additionally, Apigenin has 

a protective property against cancer in rat model through 

PI3K/Akt/mTOR signaling pathway (Yang et al., 2018). 

Our finding suggests a new insight into the anti-cancer 

activity of apigenin in hepatorenal cancer. 

 

 

CONCLUSION 
 

In conclusion, our results verify that the potential of EPA 

tends to be anti- cancer activity by preventing hepato-

renal damage in B(a)P exposure. The outcome result 

indicated that SGPT and SGOT significantly reduced 

(p<0.05) in EPA Groups compared to the B(a)P treated 

group. The creatinine and uremic levels significantly 

restored in the PBE group after B(a)P exposure. 

Furthermore, DNA concentration reduction (p<0.05) was 

shown in the administration EPA groups compared to the 

B(a)P treated group in liver and renal tissues. Our work 

also reports apigenin of EPA could potentially suppress 

hepato-renal cancer activity to the protein target, such as 

TP53, AKT1, MTOR, CCND1, GGT1, and ESR1. 

Further investigation of the present study, the 

combination treatments of EPA with doxorubicin at a 

dose of 0.5 mg/kg are needed to develop a promising 

therapeutic for cancer. 
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