Effect of Solvent Polarity on Extraction Yield, Phytochemical Composition, and Antioxidant Activity of Curcuma xanthorrhiza Roxb. and Moringa oleifera Lam.

Vina Octavia Azzahra, St Mardiana, Suharyadi Suharyadi, Rini Juita Sianipar, Dwi Sapri Ramadhan

Abstract


The present study investigated the effect of solvent polarity on extraction yield, phytochemical composition, and antioxidant activity of Curcuma xanthorrhiza Roxb. rhizomes and Moringa oleifera Lam. leaves. Maceration was carried out using ethanol, acetone, ethyl acetate, and n-hexane for 72 hours (1:10 w/v). Extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity were determined. Results demonstrated a clear polarity-dependent trend. Ethanol yielded the highest extract recovery for both species (17.55 ± 0.97% and 22.93 ± 0.65%), while n-hexane showed the lowest yield. Ethanol extracts exhibited the greatest TPC and TFC values, 47.12 mg GAE/g and 6.76 mg QE/g for C. xanthorrhiza, and 25.91 mg GAE/g and 4.67 mg QE/g for M. oleifera, respectively. Correspondingly, ethanol fractions displayed the strongest antioxidant activity with IC50 values of 22.70 and 29.80 mg/mL, indicating an inverse correlation between phenolic load and radical scavenging capacity. The study confirms that solvent polarity is a critical determinant of phytochemical recovery and antioxidant potency. The novelty of this work lies in the first comparative evaluation of C. xanthorrhiza and M. oleifera extracted under identical solvent systems, providing a rational framework for solvent selection in phytopharmaceutical and nutraceutical applications. Further work should isolate and characterize the active antioxidant constituents from the most potent extracts.

Keywords


Antioxidant Activity; Curcuma xanthorrhiza; Extraction Yield; Moringa oleifera; Solvent Polarity

Full Text:

PDF

References


Abd Rashid, S. N. A., Hasham, R., Abd. Rashid, Z. I., Cheng, K. K., Aziz, A. A., Shafin, N., & Kaprawi, A. A. (2022). Formulation and characterization of the physicochemical, antioxidant activity and sensory attributes of curcuma-based herbal drink. Materials Today: Proceedings, 57, 1061–1066. https://doi.org/10.1016/j.matpr.2021.09.272

Acree, W. E., & Lang, A. S. I. D. (2023). Reichardt’s Dye-Based Solvent Polarity and Abraham Solvent Parameters: Examining Correlations and Predictive Modeling. Liquids, 3(3), 303–313. https://doi.org/10.3390/liquids3030020

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011

Al-Shebli, W. C. H., & Al-Anbari, I. H. (2023). Studying the Antioxidant Activity of Moringa Leaf Extracts (Moringa oleifera Lam.). IOP Conference Series: Earth and Environmental Science, 1262(6), 062009. https://doi.org/10.1088/1755-1315/1262/6/062009

Arya, P., Vaidya, D., Kaushal, M., Devi, S., Gupta, A., & Chand, S. (2025). Effects of different solvents on phytochemical constituents, in-vitro antimicrobial activity, and volatile components of Boehmeria rugulosa Wedd. wood extract. Scientific Reports, 15(1), 29135. https://doi.org/10.1038/s41598-025-14506-x

Aryanti, A. R., Made Helen Susanti, Anjar Hermadi Saputro, Herayati, Indah Puspita Sari, & Syahjoko Saputra, I. (2025). Perbandingan Metode Ekstraksi Maserasi, Sokletasi, Dan Sonikasi Terhadap Nilai Rendemen Ekstrak Rimpang Kunyit (Curcuma Longa L.). Journal of Chemistry Sciences and Education, 2(01), 1–9. https://doi.org/10.69606/jcse.v2i01.237

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326

Bitwell, C., Indra, S. Sen, Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585

Borges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics (Basel, Switzerland), 9(2). https://doi.org/10.3390/antibiotics9020048

Budiansyah, A., Haroen, U., Syafwan, S., & Kurniawan, K. (2023). Antioxidant and antibacterial activities of the rhizome extract of Curcuma zedoaria extracted using some organic solvents. Journal of Advanced Veterinary and Animal Research, 10(3), 347–360. https://doi.org/10.5455/javar.2023.j687

Chathoth, S., Nawaz, M., Amir, M., Ahmed, R., Aldholmi, M., Al-Mofty, S., Cyrus, C., Vatte, C., & Salahuddin, M. (2025). Assessment of the effect of solvent polarity on Nigella sativa extracts of different origin. Journal of Pharmacy & Pharmacognosy Research, 13(5), 1345–1355. https://doi.org/10.56499/jppres24.2218_13.5.1345

Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313

Deepali, D., Gulia, V., Dhull, S. S., Beniwal, D., Rani, J., & Abdi, G. (2025). Unveiling Moringa oleifera: potent source of antioxidant and antibacterial properties. Discover Applied Sciences, 7(5), 381. https://doi.org/10.1007/s42452-025-06836-2

Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003

Dominguez-López, I., Pérez, M., & Lamuela-Raventós, R. M. (2024). Total (poly)phenol analysis by the Folin-Ciocalteu assay as an anti-inflammatory biomarker in biological samples. Critical Reviews in Food Science and Nutrition, 64(27), 10048–10054. https://doi.org/10.1080/10408398.2023.2220031

Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. Journal of Experimental Pharmacology, 15, 51–62. https://doi.org/10.2147/JEP.S379805

El-Sherbiny, G. M., Alluqmani, A. J., Elsehemy, I. A., & Kalaba, M. H. (2024). Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Scientific Reports, 14(1), 30485. https://doi.org/10.1038/s41598-024-80700-y

Fachriyah, E., Kusrini, D., Haryanto, I. B., Wulandari, S. M. B., Lestari, W. I., & Sumariyah, S. (2020). Phytochemical Test, Determination of Total Phenol, Total Flavonoids and Antioxidant Activity of Ethanol Extract of Moringa Leaves (Moringa oleifera Lam). Jurnal Kimia Sains Dan Aplikasi, 23(8), 290–294. https://doi.org/10.14710/jksa.23.8.290-294

Garofalo, G., Buzzanca, C., Ponte, M., Barbera, M., D’Amico, A., Greco, C., Mammano, M. M., Franciosi, E., Piazzese, D., Guarrasi, V., Ciulla, S., Orlando, S., Di Grigoli, A., Bonanno, A., Di Stefano, V., Settanni, L., & Gaglio, R. (2024). Comprehensive analysis of Moringa oleifera leaves’ antioxidant properties in ovine cheese. Food Bioscience, 61, 104974. https://doi.org/10.1016/j.fbio.2024.104974

Geleta, W. D., Gebru, K. B., Dessie, A. A., Yusuf, Y. A., Gebrewbet, G. H., & WoldeMichae, B. T. (2025). Optimization of Antioxidant Extraction From Moringa oleifera Seeds Using Response Surface Methodology: Phytochemical Analysis and DPPH Assay. Journal of Food Processing and Preservation, 2025(1). https://doi.org/10.1155/jfpp/8210465

Grover, M., Behl, T., Sehgal, A., Singh, S., Sharma, N., Virmani, T., Rachamalla, M., Farasani, A., Chigurupati, S., Alsubayiel, A. M., Felemban, S. G., Sanduja, M., & Bungau, S. (2021). In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules, 26(24), 7509. https://doi.org/10.3390/molecules26247509

Gulcin, ?. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 99(5), 1893–1997. https://doi.org/10.1007/s00204-025-03997-2

Gulcin, ?., & Alwasel, S. H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248

Harborne, J. B. . (2008). Phytochemical methods : a guide to modern techniques of plant analysis. Springer.

Haroen, U., Syafwan, S., Kurniawan, K., & Budiansyah, A. (2022). Determination of nutrient content, ?-carotene, and antioxidant activity of Moringa oleifera extraction using organic solution. Journal of Advanced Veterinary and Animal Research, 9(2), 246. https://doi.org/10.5455/javar.2022.i590

Haroen, U., Syafwan, S., Kurniawan, K., Budiansyah, A., Widjaja, N., & Fakhri, S. (2025). The phenolic and flavonoid content and biological activity of Curcuma (Curcuma xanthorrhiza) fractions with different solvent polarities. Journal of Advanced Veterinary and Animal Research, 12(1), 192. https://doi.org/10.5455/javar.2025.l886

Jaglan, P., Kumar, M., Kaushik, D., Kumar, A., Argyropoulos, D., Oz, F., & Proestos, C. (2024). Optimization of the extraction process of Moringa oleifera flower by using Deep Eutectic Solvents (DES). Results in Chemistry, 7, 101445. https://doi.org/10.1016/j.rechem.2024.101445

Jonathan, C. A., & Ananingsih, V. K. (2025). Chemical Characteristics Profile of Temulawak (Curcuma xanthorrhiza) Extract Processed Using a Miniplant-Scale Extractor with Variations in Temperature and Time. Journal of Food, Culinary, and Nutrition, 1(2). https://journal.unika.ac.id/index.php/JFCN

Karta, I. W., Warsito, W., Masruri, M., & Mudianta, I. W. (2024). Effects of Solvent Polarity on Phytoconstituents, Antioxidant and Anti-inflammatory Activities of Dracaena angustifolia Roxb Root Bark Extracts. Tropical Journal of Natural Product Research, 8(5). https://doi.org/10.26538/tjnpr/v8i5.15

Liga, S., Magyari-Pavel, I. Z., Avram, ?tefana, Minda, D. I., Vlase, A.-M., Muntean, D., Vlase, L., Moac?, E.-A., & Danciu, C. (2025). Comparative Analysis of Moringa oleifera Lam. Leaves Ethanolic Extracts: Effects of Extraction Methods on Phytochemicals, Antioxidant, Antimicrobial, and In Ovo Profile. Plants (Basel, Switzerland), 14(11). https://doi.org/10.3390/plants14111653

Lister, I. N. E., Chiuman, L., Mutia, M. S., Hartono, H., Girsang, E., Sutendi, A. F., Kusuma, H. S. W., Hadiprasetyo, D. S., & Widowati, W. (2025). Hepatoprotective effects of Curcuma xanthorrhiza Roxb. extract via free radical scavenger, inhibiting apoptosis and inflammation mechanisms in acetaminophen-induced liver injury. Iranian Journal of Basic Medical Sciences, 28(8), 1100–1106. https://doi.org/10.22038/ijbms.2025.82500.17833

Martinez-Morales, F., Alonso-Castro, A. J., Zapata-Morales, J. R., Carranza-Álvarez, C., & Aragon-Martinez, O. H. (2020). Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers, 74(10), 3325–3334. https://doi.org/10.1007/s11696-020-01161-x

Mohamed, N. E. A., Ismail, A. A. A., & Eisa, A. (2025). Phytochemical Profiling, Antimicrobial, and Antioxidant Activities of Tamarindus indica Pulp Extracts: A Comprehensive Evaluation. Biology, Medicine, & Natural Product Chemistry, 14(1), 51–56. https://doi.org/10.14421/biomedich.2025.141.51-56

Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/s2175-97902019000417129

Nazar, S., Hussain, M. A., Khan, A., Muhammad, G., & Bukhari, S. N. A. (2020). Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. Arabian Journal of Chemistry, 13(8), 6348–6365. https://doi.org/10.1016/j.arabjc.2020.05.037

Ngo, Q. L., Nguyen, P. T., Nguyen, V. M. E., Nguyen, T. N. T., Phan, N. T., Ngo, K. K. M., Ngo, T. N., Phan, N. M., & Nguyen, T. P. (2023). Isolation and identification of triterpenoid compounds from Couroupita guianensis Aubl. CTU Journal of Innovation and Sustainable Development, 15(1), 91–97. https://doi.org/10.22144/ctu.jen.2023.012

Nurcholis, W., Marliani, N., Asyhar, R., & Minarni, M. (2023). Optimized Solvents for the Maceration of Phenolic Antioxidants from Curcuma xanthorrhiza Rhizome using a Simplex Centroid Design. Journal of Pharmacy & Bioallied Sciences, 15(1), 35–41. https://doi.org/10.4103/jpbs.jpbs_185_23

Ouamnina, A., Alahyane, A., Elateri, I., Boutasknit, A., & Abderrazik, M. (2024). Relationship between Phenolic Compounds and Antioxidant Activity of Some Moroccan Date Palm Fruit Varieties (Phoenix dactylifera L.): A Two-Year Study. Plants, 13(8), 1119. https://doi.org/10.3390/plants13081119

Pop, O. L., Kerezsi, A. D., & Ciont (Nagy), C. (2022). A Comprehensive Review of Moringa oleifera Bioactive Compounds—Cytotoxicity Evaluation and Their Encapsulation. Foods, 11(23), 3787. https://doi.org/10.3390/foods11233787

Qi, N., Zhao, W., Xue, C., Zhang, L., Hu, H., Jin, Y., Xue, X., Chen, R., & Zhang, J. (2025). Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules, 30(2), 370. https://doi.org/10.3390/molecules30020370

Quitério, E., Grosso, C., Ferraz, R., Delerue-Matos, C., & Soares, C. (2022). A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drugs, 20(11), 677. https://doi.org/10.3390/md20110677

Rajkumar, G., Panambara, P. A. H. R., & Sanmugarajah, V. (2022). Comparative Analysis of Qualitative and Quantitative Phytochemical Evaluation of Selected Leaves of Medicinal Plants in Jaffna, Sri Lanka. Borneo Journal of Pharmacy, 5(2), 93–103. https://doi.org/10.33084/bjop.v5i2.3091

Rangani, S. C., Marapana, R. A. U. J., Senanayake, G. S. A., Perera, P. R. D., Pathmalal, M. M., & Amarasinghe, H. K. (2023). Correlation analysis of phenolic compounds, antioxidant potential, oxygen radical scavenging capacity, and alkaloid content in ripe and unripe Areca catechu from major cultivation areas in Sri Lanka. Applied Food Research, 3(2), 100361. https://doi.org/10.1016/j.afres.2023.100361

Rosidi, A., Soesanto, E., Sulistyowati, E., & Yonata, D. (2025). A New Approach in Preparing Curcumin Microcapsules from Temulawak (Curcuma xanthorrhiza Roxb.) Extract as a Source of Natural Antioxidants for the Pharmaceutical and Food Industries. Current Research in Nutrition and Food Science Journal, Special-Issue-July, 124–140. https://doi.org/10.12944/CRNFSJ.13.Special-Issue-July.08

Royani, A., Hanafi, M., Lotulung, P. D. N., Julistiono, H., Dinoto, A., & Manaf, A. (2023). Analysis of the Antibacterial Activity and the Total Phenolic and Flavonoid Contents of the Moringa oleifera Leaf Extract as an Antimicrobial Agent against Pseudomonas aeruginosa. Scientifica, 2023, 5782063. https://doi.org/10.1155/2023/5782063

Segneanu, A.-E., Vlase, G., Lukinich-Gruia, A. T., Herea, D.-D., & Grozescu, I. (2022). Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants, 11(11), 2261. https://doi.org/10.3390/antiox11112261

Segwatibe, M. K., Cosa, S., & Bassey, K. (2023). Antioxidant and Antimicrobial Evaluations of Moringa oleifera Lam Leaves Extract and Isolated Compounds. Molecules, 28(2), 899. https://doi.org/10.3390/molecules28020899

Setiawan, P. Y. B., Hita, I. P. G. A. P., Ardinata, I. P. R., & Suryaningsih, N. P. A. (2023). Synergistic Effect Of Curcuma Xanthorrhiza and Physalis Angulata Extracts As Antioxidants Against DPPH Radicals. Journal of Pharmaceutical Science and Application, 5(2), 85. https://doi.org/10.24843/JPSA.2023.v05.i02.p05

Shi, L., Zhao, W., Yang, Z., Subbiah, V., & Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112–81129. https://doi.org/10.1007/s11356-022-23337-6

Sun, S., Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S.-J., Ryu, D., Park, W., Ha, K.-T., & Zhuang, S. (2025). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1615338

Suryani, S., AL Anshory, A. C., Marlin, M., Artika, I. M., Ambarsari, L., & Nurcholis, W. (2022). Variability total phenolic content and antioxidant activity of Curcuma xanthorrhiza and C. aeruginosa cultivated in three different locations in West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(4). https://doi.org/10.13057/biodiv/d230434

Torres, P., Osaki, S., Silveira, E., dos Santos, D. Y. A. C., & Chow, F. (2024). Comprehensive evaluation of Folin-Ciocalteu assay for total phenolic quantification in algae (Chlorophyta, Phaeophyceae, and Rhodophyta). Algal Research, 80, 103503. https://doi.org/10.1016/j.algal.2024.103503

Tourabi, M., Faiz, K., Ezzouggari, R., Louasté, B., Merzouki, M., Dauelbait, M., Bourhia, M., Almaary, K. S., Siddique, F., Lyoussi, B., & Derwich, E. (2025). Optimization of extraction process and solvent polarities to enhance the recovery of phytochemical compounds, nutritional content, and biofunctional properties of Mentha longifolia L. extracts. Bioresources and Bioprocessing, 12(1), 24. https://doi.org/10.1186/s40643-025-00859-8

Tripathi, S., Singh, S., Mishra, N., & Mishra, N. (2025). The Impact of Solvent Polarity on the Phenolic and Antioxidant Capacity of Green Coffee Beans (Robusta species) extracts. Current Research in Nutrition and Food Science Journal, 13(2), 926–936. https://doi.org/10.12944/CRNFSJ.13.2.27

Urías-Orona, V., Gutiérrez-Soto, G., Ruiz-Bautista, J., Flores-Alonso, R., Montiel-Ramos, I., Martínez-Ávila, G. C. G., Aranda-Ruiz, J., & Niño-Medina, G. (2017). Influence of extraction solvent on phenolic content and antioxidant capacity level of a commercial food supplement from Moringa oleifera leaves. Archivos Latinoamericanos De Nutrición, 67(3), 211–217. https://doi.org/https://ve.scielo.org/pdf/alan/v67n3/2309-5806-alan-67-03-211.pdf

Widyastuti, I., Luthfah, H. Z., Hartono, Y. I., Islamadina, R., Can, A. T., & Rohman, A. (2020). Antioxidant Activity of Temulawak (Curcuma xanthorrhiza Roxb.) and its Classification with Chemometrics. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 29. https://doi.org/10.22146/ijcpa.507

Wihanto, L., Waworuntu, G. L., Tedyanto, C. P., & Puspitasari, H. (2023). Moringa oleifera Leaf Ethanol Extract Inhibits Toxoplasma gondii Tachyzoites Replication. Indonesian Journal of Tropical and Infectious Disease, 11(1), 35–43. https://doi.org/10.20473/ijtid.v11i1.42672

Yodi, G., Artika, I. M., & Nurcholis, W. (2023). Effect of varieties of Curcuma xanthorrhiza and extraction solvent on total phenolic, total flavonoid content, and antioxidant capacity. Biodiversitas Journal of Biological Diversity, 24(12). https://doi.org/10.13057/biodiv/d241203

Yusnira, & Ediputra, K. (2025). Optimization of Ultrasonic-Assisted Extraction of Curcuminoids from Temulawak (Curcuma xanthorrhiza Roxb.) Using Response Surface Methodology. Jurnal Penelitian Pendidikan IPA, 11(8), 183–192. https://doi.org/10.29303/jppipa.v11i8.12108

Zarrinmehr, M. J., Daneshvar, E., Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., Wang, H., Farhadian, O., & Bhatnagar, A. (2022). The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology, 344, 126303. https://doi.org/10.1016/j.biortech.2021.126303




DOI: https://doi.org/10.14421/biomedich.2025.142.%25p

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Vina Octavia Azzahra, St Mardiana, Suharyadi Suharyadi, Rini Juita Sianipar, Dwi Sapri Ramadhan



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC