Effect of Solvent Polarity on Extraction Yield, Phytochemical Composition, and Antioxidant Activity of Curcuma xanthorrhiza Roxb. and Moringa oleifera Lam.
Abstract
Keywords
Full Text:
PDFReferences
Abd Rashid, S. N. A., Hasham, R., Abd. Rashid, Z. I., Cheng, K. K., Aziz, A. A., Shafin, N., & Kaprawi, A. A. (2022). Formulation and characterization of the physicochemical, antioxidant activity and sensory attributes of curcuma-based herbal drink. Materials Today: Proceedings, 57, 1061–1066. https://doi.org/10.1016/j.matpr.2021.09.272
Acree, W. E., & Lang, A. S. I. D. (2023). Reichardt’s Dye-Based Solvent Polarity and Abraham Solvent Parameters: Examining Correlations and Predictive Modeling. Liquids, 3(3), 303–313. https://doi.org/10.3390/liquids3030020
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Al-Shebli, W. C. H., & Al-Anbari, I. H. (2023). Studying the Antioxidant Activity of Moringa Leaf Extracts (Moringa oleifera Lam.). IOP Conference Series: Earth and Environmental Science, 1262(6), 062009. https://doi.org/10.1088/1755-1315/1262/6/062009
Arya, P., Vaidya, D., Kaushal, M., Devi, S., Gupta, A., & Chand, S. (2025). Effects of different solvents on phytochemical constituents, in-vitro antimicrobial activity, and volatile components of Boehmeria rugulosa Wedd. wood extract. Scientific Reports, 15(1), 29135. https://doi.org/10.1038/s41598-025-14506-x
Aryanti, A. R., Made Helen Susanti, Anjar Hermadi Saputro, Herayati, Indah Puspita Sari, & Syahjoko Saputra, I. (2025). Perbandingan Metode Ekstraksi Maserasi, Sokletasi, Dan Sonikasi Terhadap Nilai Rendemen Ekstrak Rimpang Kunyit (Curcuma Longa L.). Journal of Chemistry Sciences and Education, 2(01), 1–9. https://doi.org/10.69606/jcse.v2i01.237
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326
Bitwell, C., Indra, S. Sen, Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
Borges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics (Basel, Switzerland), 9(2). https://doi.org/10.3390/antibiotics9020048
Budiansyah, A., Haroen, U., Syafwan, S., & Kurniawan, K. (2023). Antioxidant and antibacterial activities of the rhizome extract of Curcuma zedoaria extracted using some organic solvents. Journal of Advanced Veterinary and Animal Research, 10(3), 347–360. https://doi.org/10.5455/javar.2023.j687
Chathoth, S., Nawaz, M., Amir, M., Ahmed, R., Aldholmi, M., Al-Mofty, S., Cyrus, C., Vatte, C., & Salahuddin, M. (2025). Assessment of the effect of solvent polarity on Nigella sativa extracts of different origin. Journal of Pharmacy & Pharmacognosy Research, 13(5), 1345–1355. https://doi.org/10.56499/jppres24.2218_13.5.1345
Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
Deepali, D., Gulia, V., Dhull, S. S., Beniwal, D., Rani, J., & Abdi, G. (2025). Unveiling Moringa oleifera: potent source of antioxidant and antibacterial properties. Discover Applied Sciences, 7(5), 381. https://doi.org/10.1007/s42452-025-06836-2
Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003
Dominguez-López, I., Pérez, M., & Lamuela-Raventós, R. M. (2024). Total (poly)phenol analysis by the Folin-Ciocalteu assay as an anti-inflammatory biomarker in biological samples. Critical Reviews in Food Science and Nutrition, 64(27), 10048–10054. https://doi.org/10.1080/10408398.2023.2220031
Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. Journal of Experimental Pharmacology, 15, 51–62. https://doi.org/10.2147/JEP.S379805
El-Sherbiny, G. M., Alluqmani, A. J., Elsehemy, I. A., & Kalaba, M. H. (2024). Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Scientific Reports, 14(1), 30485. https://doi.org/10.1038/s41598-024-80700-y
Fachriyah, E., Kusrini, D., Haryanto, I. B., Wulandari, S. M. B., Lestari, W. I., & Sumariyah, S. (2020). Phytochemical Test, Determination of Total Phenol, Total Flavonoids and Antioxidant Activity of Ethanol Extract of Moringa Leaves (Moringa oleifera Lam). Jurnal Kimia Sains Dan Aplikasi, 23(8), 290–294. https://doi.org/10.14710/jksa.23.8.290-294
Garofalo, G., Buzzanca, C., Ponte, M., Barbera, M., D’Amico, A., Greco, C., Mammano, M. M., Franciosi, E., Piazzese, D., Guarrasi, V., Ciulla, S., Orlando, S., Di Grigoli, A., Bonanno, A., Di Stefano, V., Settanni, L., & Gaglio, R. (2024). Comprehensive analysis of Moringa oleifera leaves’ antioxidant properties in ovine cheese. Food Bioscience, 61, 104974. https://doi.org/10.1016/j.fbio.2024.104974
Geleta, W. D., Gebru, K. B., Dessie, A. A., Yusuf, Y. A., Gebrewbet, G. H., & WoldeMichae, B. T. (2025). Optimization of Antioxidant Extraction From Moringa oleifera Seeds Using Response Surface Methodology: Phytochemical Analysis and DPPH Assay. Journal of Food Processing and Preservation, 2025(1). https://doi.org/10.1155/jfpp/8210465
Grover, M., Behl, T., Sehgal, A., Singh, S., Sharma, N., Virmani, T., Rachamalla, M., Farasani, A., Chigurupati, S., Alsubayiel, A. M., Felemban, S. G., Sanduja, M., & Bungau, S. (2021). In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules, 26(24), 7509. https://doi.org/10.3390/molecules26247509
Gulcin, ?. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 99(5), 1893–1997. https://doi.org/10.1007/s00204-025-03997-2
Gulcin, ?., & Alwasel, S. H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
Harborne, J. B. . (2008). Phytochemical methods : a guide to modern techniques of plant analysis. Springer.
Haroen, U., Syafwan, S., Kurniawan, K., & Budiansyah, A. (2022). Determination of nutrient content, ?-carotene, and antioxidant activity of Moringa oleifera extraction using organic solution. Journal of Advanced Veterinary and Animal Research, 9(2), 246. https://doi.org/10.5455/javar.2022.i590
Haroen, U., Syafwan, S., Kurniawan, K., Budiansyah, A., Widjaja, N., & Fakhri, S. (2025). The phenolic and flavonoid content and biological activity of Curcuma (Curcuma xanthorrhiza) fractions with different solvent polarities. Journal of Advanced Veterinary and Animal Research, 12(1), 192. https://doi.org/10.5455/javar.2025.l886
Jaglan, P., Kumar, M., Kaushik, D., Kumar, A., Argyropoulos, D., Oz, F., & Proestos, C. (2024). Optimization of the extraction process of Moringa oleifera flower by using Deep Eutectic Solvents (DES). Results in Chemistry, 7, 101445. https://doi.org/10.1016/j.rechem.2024.101445
Jonathan, C. A., & Ananingsih, V. K. (2025). Chemical Characteristics Profile of Temulawak (Curcuma xanthorrhiza) Extract Processed Using a Miniplant-Scale Extractor with Variations in Temperature and Time. Journal of Food, Culinary, and Nutrition, 1(2). https://journal.unika.ac.id/index.php/JFCN
Karta, I. W., Warsito, W., Masruri, M., & Mudianta, I. W. (2024). Effects of Solvent Polarity on Phytoconstituents, Antioxidant and Anti-inflammatory Activities of Dracaena angustifolia Roxb Root Bark Extracts. Tropical Journal of Natural Product Research, 8(5). https://doi.org/10.26538/tjnpr/v8i5.15
Liga, S., Magyari-Pavel, I. Z., Avram, ?tefana, Minda, D. I., Vlase, A.-M., Muntean, D., Vlase, L., Moac?, E.-A., & Danciu, C. (2025). Comparative Analysis of Moringa oleifera Lam. Leaves Ethanolic Extracts: Effects of Extraction Methods on Phytochemicals, Antioxidant, Antimicrobial, and In Ovo Profile. Plants (Basel, Switzerland), 14(11). https://doi.org/10.3390/plants14111653
Lister, I. N. E., Chiuman, L., Mutia, M. S., Hartono, H., Girsang, E., Sutendi, A. F., Kusuma, H. S. W., Hadiprasetyo, D. S., & Widowati, W. (2025). Hepatoprotective effects of Curcuma xanthorrhiza Roxb. extract via free radical scavenger, inhibiting apoptosis and inflammation mechanisms in acetaminophen-induced liver injury. Iranian Journal of Basic Medical Sciences, 28(8), 1100–1106. https://doi.org/10.22038/ijbms.2025.82500.17833
Martinez-Morales, F., Alonso-Castro, A. J., Zapata-Morales, J. R., Carranza-Álvarez, C., & Aragon-Martinez, O. H. (2020). Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers, 74(10), 3325–3334. https://doi.org/10.1007/s11696-020-01161-x
Mohamed, N. E. A., Ismail, A. A. A., & Eisa, A. (2025). Phytochemical Profiling, Antimicrobial, and Antioxidant Activities of Tamarindus indica Pulp Extracts: A Comprehensive Evaluation. Biology, Medicine, & Natural Product Chemistry, 14(1), 51–56. https://doi.org/10.14421/biomedich.2025.141.51-56
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/s2175-97902019000417129
Nazar, S., Hussain, M. A., Khan, A., Muhammad, G., & Bukhari, S. N. A. (2020). Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. Arabian Journal of Chemistry, 13(8), 6348–6365. https://doi.org/10.1016/j.arabjc.2020.05.037
Ngo, Q. L., Nguyen, P. T., Nguyen, V. M. E., Nguyen, T. N. T., Phan, N. T., Ngo, K. K. M., Ngo, T. N., Phan, N. M., & Nguyen, T. P. (2023). Isolation and identification of triterpenoid compounds from Couroupita guianensis Aubl. CTU Journal of Innovation and Sustainable Development, 15(1), 91–97. https://doi.org/10.22144/ctu.jen.2023.012
Nurcholis, W., Marliani, N., Asyhar, R., & Minarni, M. (2023). Optimized Solvents for the Maceration of Phenolic Antioxidants from Curcuma xanthorrhiza Rhizome using a Simplex Centroid Design. Journal of Pharmacy & Bioallied Sciences, 15(1), 35–41. https://doi.org/10.4103/jpbs.jpbs_185_23
Ouamnina, A., Alahyane, A., Elateri, I., Boutasknit, A., & Abderrazik, M. (2024). Relationship between Phenolic Compounds and Antioxidant Activity of Some Moroccan Date Palm Fruit Varieties (Phoenix dactylifera L.): A Two-Year Study. Plants, 13(8), 1119. https://doi.org/10.3390/plants13081119
Pop, O. L., Kerezsi, A. D., & Ciont (Nagy), C. (2022). A Comprehensive Review of Moringa oleifera Bioactive Compounds—Cytotoxicity Evaluation and Their Encapsulation. Foods, 11(23), 3787. https://doi.org/10.3390/foods11233787
Qi, N., Zhao, W., Xue, C., Zhang, L., Hu, H., Jin, Y., Xue, X., Chen, R., & Zhang, J. (2025). Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules, 30(2), 370. https://doi.org/10.3390/molecules30020370
Quitério, E., Grosso, C., Ferraz, R., Delerue-Matos, C., & Soares, C. (2022). A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drugs, 20(11), 677. https://doi.org/10.3390/md20110677
Rajkumar, G., Panambara, P. A. H. R., & Sanmugarajah, V. (2022). Comparative Analysis of Qualitative and Quantitative Phytochemical Evaluation of Selected Leaves of Medicinal Plants in Jaffna, Sri Lanka. Borneo Journal of Pharmacy, 5(2), 93–103. https://doi.org/10.33084/bjop.v5i2.3091
Rangani, S. C., Marapana, R. A. U. J., Senanayake, G. S. A., Perera, P. R. D., Pathmalal, M. M., & Amarasinghe, H. K. (2023). Correlation analysis of phenolic compounds, antioxidant potential, oxygen radical scavenging capacity, and alkaloid content in ripe and unripe Areca catechu from major cultivation areas in Sri Lanka. Applied Food Research, 3(2), 100361. https://doi.org/10.1016/j.afres.2023.100361
Rosidi, A., Soesanto, E., Sulistyowati, E., & Yonata, D. (2025). A New Approach in Preparing Curcumin Microcapsules from Temulawak (Curcuma xanthorrhiza Roxb.) Extract as a Source of Natural Antioxidants for the Pharmaceutical and Food Industries. Current Research in Nutrition and Food Science Journal, Special-Issue-July, 124–140. https://doi.org/10.12944/CRNFSJ.13.Special-Issue-July.08
Royani, A., Hanafi, M., Lotulung, P. D. N., Julistiono, H., Dinoto, A., & Manaf, A. (2023). Analysis of the Antibacterial Activity and the Total Phenolic and Flavonoid Contents of the Moringa oleifera Leaf Extract as an Antimicrobial Agent against Pseudomonas aeruginosa. Scientifica, 2023, 5782063. https://doi.org/10.1155/2023/5782063
Segneanu, A.-E., Vlase, G., Lukinich-Gruia, A. T., Herea, D.-D., & Grozescu, I. (2022). Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants, 11(11), 2261. https://doi.org/10.3390/antiox11112261
Segwatibe, M. K., Cosa, S., & Bassey, K. (2023). Antioxidant and Antimicrobial Evaluations of Moringa oleifera Lam Leaves Extract and Isolated Compounds. Molecules, 28(2), 899. https://doi.org/10.3390/molecules28020899
Setiawan, P. Y. B., Hita, I. P. G. A. P., Ardinata, I. P. R., & Suryaningsih, N. P. A. (2023). Synergistic Effect Of Curcuma Xanthorrhiza and Physalis Angulata Extracts As Antioxidants Against DPPH Radicals. Journal of Pharmaceutical Science and Application, 5(2), 85. https://doi.org/10.24843/JPSA.2023.v05.i02.p05
Shi, L., Zhao, W., Yang, Z., Subbiah, V., & Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112–81129. https://doi.org/10.1007/s11356-022-23337-6
Sun, S., Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S.-J., Ryu, D., Park, W., Ha, K.-T., & Zhuang, S. (2025). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1615338
Suryani, S., AL Anshory, A. C., Marlin, M., Artika, I. M., Ambarsari, L., & Nurcholis, W. (2022). Variability total phenolic content and antioxidant activity of Curcuma xanthorrhiza and C. aeruginosa cultivated in three different locations in West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(4). https://doi.org/10.13057/biodiv/d230434
Torres, P., Osaki, S., Silveira, E., dos Santos, D. Y. A. C., & Chow, F. (2024). Comprehensive evaluation of Folin-Ciocalteu assay for total phenolic quantification in algae (Chlorophyta, Phaeophyceae, and Rhodophyta). Algal Research, 80, 103503. https://doi.org/10.1016/j.algal.2024.103503
Tourabi, M., Faiz, K., Ezzouggari, R., Louasté, B., Merzouki, M., Dauelbait, M., Bourhia, M., Almaary, K. S., Siddique, F., Lyoussi, B., & Derwich, E. (2025). Optimization of extraction process and solvent polarities to enhance the recovery of phytochemical compounds, nutritional content, and biofunctional properties of Mentha longifolia L. extracts. Bioresources and Bioprocessing, 12(1), 24. https://doi.org/10.1186/s40643-025-00859-8
Tripathi, S., Singh, S., Mishra, N., & Mishra, N. (2025). The Impact of Solvent Polarity on the Phenolic and Antioxidant Capacity of Green Coffee Beans (Robusta species) extracts. Current Research in Nutrition and Food Science Journal, 13(2), 926–936. https://doi.org/10.12944/CRNFSJ.13.2.27
Urías-Orona, V., Gutiérrez-Soto, G., Ruiz-Bautista, J., Flores-Alonso, R., Montiel-Ramos, I., Martínez-Ávila, G. C. G., Aranda-Ruiz, J., & Niño-Medina, G. (2017). Influence of extraction solvent on phenolic content and antioxidant capacity level of a commercial food supplement from Moringa oleifera leaves. Archivos Latinoamericanos De Nutrición, 67(3), 211–217. https://doi.org/https://ve.scielo.org/pdf/alan/v67n3/2309-5806-alan-67-03-211.pdf
Widyastuti, I., Luthfah, H. Z., Hartono, Y. I., Islamadina, R., Can, A. T., & Rohman, A. (2020). Antioxidant Activity of Temulawak (Curcuma xanthorrhiza Roxb.) and its Classification with Chemometrics. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 29. https://doi.org/10.22146/ijcpa.507
Wihanto, L., Waworuntu, G. L., Tedyanto, C. P., & Puspitasari, H. (2023). Moringa oleifera Leaf Ethanol Extract Inhibits Toxoplasma gondii Tachyzoites Replication. Indonesian Journal of Tropical and Infectious Disease, 11(1), 35–43. https://doi.org/10.20473/ijtid.v11i1.42672
Yodi, G., Artika, I. M., & Nurcholis, W. (2023). Effect of varieties of Curcuma xanthorrhiza and extraction solvent on total phenolic, total flavonoid content, and antioxidant capacity. Biodiversitas Journal of Biological Diversity, 24(12). https://doi.org/10.13057/biodiv/d241203
Yusnira, & Ediputra, K. (2025). Optimization of Ultrasonic-Assisted Extraction of Curcuminoids from Temulawak (Curcuma xanthorrhiza Roxb.) Using Response Surface Methodology. Jurnal Penelitian Pendidikan IPA, 11(8), 183–192. https://doi.org/10.29303/jppipa.v11i8.12108
Zarrinmehr, M. J., Daneshvar, E., Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., Wang, H., Farhadian, O., & Bhatnagar, A. (2022). The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology, 344, 126303. https://doi.org/10.1016/j.biortech.2021.126303
DOI: https://doi.org/10.14421/biomedich.2025.142.%25p
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Vina Octavia Azzahra, St Mardiana, Suharyadi Suharyadi, Rini Juita Sianipar, Dwi Sapri Ramadhan
Biology, Medicine, & Natural Product Chemistry |




