Isolation, Characterization and Growth Optimization of Glufosunate Ammonium Degrading Bacteria from Farmlands Soil in Mubi
Abstract
The persistent application of glufosinate ammonium as a non-selective herbicide in agricultural practices raises significant environmental concerns due to its potential accumulation and eco-toxicity. This study focused on the isolation, characterization, degradation and optimization of glufosinate ammonium degrading bacteria from agricultural soil in Mubi, Adamawa State, Nigeria. Three isolates were screened from mineral salt medium containing glufosinate ammonium herbicides as carbon source which are isolate GA1, GA2 and GA3 but the isolate GA3 strain show highest degradation potential of glufosinate ammonium compare to GA1 and GA2 which was determined by UV-spectrophotometer and further by LC-MS which showed degradation by 75.9% the GA3 strain was characterized morphologically and biochemically as gram positive, and through 16SrRNA gene sequencing and phylogenetic analysis confirmed isolate GA3 (94.45% 16SrRNA homology to Bacillus ). Optimization of the degradation condition was performed using the one factor at a time (OFAT) approach, which revealed that the strain has growth optima at 35oC, pH 7.0, 10 mg/L glufosinate ammonium, with 5% inoculum size, and 48 hours’ incubation peak growth, the GA3 stain had growth stimulated best with glutamic acid 1g/L, (nitrogen source), and sucrose 1g/L (carbon source), exposure to heavy metal revealed Zn,Cu, and Fe stimulate growth whereas Pb and Hg caused significant inhibition. (p<0.0001, ANOVA). Response surface methodology (RSM) optimization enhanced degradation efficiency with GA3 strain degrading 75.9% glufosinate ammonium, the model shows great fit to the quadratic model (R2=0.9552) for GA3strain (F=23.66., P<0.0001). The results revealed that GA3 strain is capable of significant glufosinate ammonium degradation, with optimized conditions enhancing degradation efficiency. This study revealed great potential of indigenous soil microbes in bioremediation of herbicides-contaminated environments and provide a foundation for the development of eco-friendly strategies to mitigate glufosinate pollution in agricultural systems.
Keywords
Full Text:
PDFReferences
Abou-Shanab, R. A. I., Khalafallah, M. A., Emam, N. F., Aly, M. A., Abou-Sdera, S. A., & Matter, I. A. (2012). Characterisation and identification of carbofuran-utilising bacteria isolated from agricultural soil. Chemistry and Ecology, 28(2), 193–203. https://doi.org/10.1080/02757540.2011.628317.
Agouri, S. R. (2014). Genetic characterisation of MBL positive pseudomonas and Enterobacteriaceae (Doctoral dissertation, Cardiff University).
Alhassan, A. Y., Babandi, A., Ibrahim, S., Uba, G., & Yakasai, H. M. (2020). Isolation and characterization of molybdenum-reducing Pseudomonas sp. from agricultural land in Northwest Nigeria. Journal of Biochemistry, Microbiology and Biotechnology (JOBIMB), 8(1), 23–28.
Babandi abba, Y., Yussuff, M. Y. Y., Yakasai, H. M., Ya’u, M., Shehu, D., Ibrahim, S., Abubakar, N., Muhammad, A., Babagana, K., Abubakar, S. M., Abdullahi, S. S., Birniwa, A. H., Ibrahim, A., & Jagaba, A. H. (2024). Determination of heavy metals contamination, risk prediction and antioxidant properties of anti-malarial herbal mixture sold in Kano state, Nigeria. Case Studies in Chemical and Environmental Engineering,9,100576.https://doi.org/10.1016/j.cscee.2023.100576
Babandi, A., Anosike C. A., Yakasai, H. M., Ibrahim, S. and Ezeanyika, L. U. S. (2021). Statistical Optimization of Alkaloids Extraction from Ficus sycomorus Leaves using Response Surface Methodology. Malaysian Journal of Biochemistry & Molecular Biology (MJBMB), 3: 1 – 14.
Babandi, A., Murtala, Y., Yakasai, H. M., Shehu, D., Babagana, K., Ibrahim, A., Anosike, C. A., & Ezeanyika, L. U. S. (2020). Non-carcinogenic and carcinogenic risk potentials of metals exposure from vegetables grown in Sharada Industrial Area Kano, Nigeria. Journal of Chemical Health Risks, 10(1), 1–15. https://doi.org/10.22034/jchr.2019.583982.1011
Bergey, D. H., Holt, J. G. (Ed). (1994). Bergey's manual of determinative bacteriology (9th ed.): Daltimore, MD:Lippincott Williams & Wilkins.
Birniwa, A. H., Abubakar A.S., Huq, A K. O., and Mahmud, H. N. M. E 2021. Polypyrrole-polyethyleneimine (PPy-PEI) nanocomposite: an effective adsorbent for nickel ion adsorption from aqueous solution, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 58(3), 206–217. https://doi.org/10.1080/10601325.2020.1840921
Birniwa, A. H., Kehili, S., Ali, M., Musa, H., Ali, U., Kutty, S. R. M., Jagaba, A. H., Abdullahi, S. S., Tag-Eldin, E. M., & Mahmud, H. N. M. E. (2022). Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations, 9(11), 356. https://doi.org/10.3390/separations9110356
Bohn, T., Then, C., Bauer-Panskus, A., & Miyazaki, J. (2020). Serious shortcomings in the European risk assessment of herbicide-tolerant GE plants. Testbiotech Report, 2016-2019. Retrieved from https://www.testbiotech.org
Carbonari CA, Latorre DO, Gomes GLGC, Velini ED, Owens DK, Pan Z, 2016. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® cotton. Planta 243:925-933
Chau-Ling Hsiao, Chiu-Chung Young, Ching-Yuh Wang Source: Weed Science, 55(6):631-637. 2007. Screening and Identification of Glufosinate-Degrading Bacteria from GlufosinateTreated Soils Published By: Weed Science Society of America DOI: http://dx.doi.org/10.1614/WS-06-202.1.
Chen, L., Luo S., Xiao, X, Wang, S., Wan, Y., Li, J., Zeng, G., & Hu, X. (2020). Co-remediation of heavy metals and organophosphorus pesticides by a bacterial consortium in contaminated soil. Chemosphere, 243, 125320. https://doi.org/10.1016/j.chemosphere.2019.125320.
City Population. (2022). Mubi North (Local Government Area, Nigeria) – Population Statistics, Charts, Map and Location. Retrieved from https://www.citypopulation.de/en/nigeria/admin/adamawa/NGA002014__mubi_north/
Copping, L. G., & Duke, S. O. (2021). Glufosinate-ammonium: A review of properties and applications. Pesticide Biochemistry and Physiology, 175, 104-112. https://doi.org/10.1016/j.pestbp.2021.104112
Narasimha Reddy Donthi, A. D. Dileep Kumar. MSc., PGDPRM. (2022), Pesticide Action Network India. Glufosinate Ammonium, An Overview, December 2022. Pesticide Action Network (PAN) India 10/233/3, Ground Floor Sarangi Complex, Chiyaram Post, Thrissur District. Kerala, India. PIN-680026.
Duc, H. D. (2022). Enhancement of carbofuran degradation by immobilized Bacillus sp. strain DT1. Environmental Engineering Research, 27(4). https://doi.org/10.4491/eer.2021.158
Ekram, M. A. E., Sarker, I., Rahi, M. S., Rahman, M. A., Saha, A. K., & Reza, M. A. (2020). Efficacy of soil-borne Enterobacter sp. for carbofuran degradation: HPLC quantitation of degradation rate. Journal of Basic Microbiology, 60(5), 390–399. https://doi.org/10.1002/jobm.201900570.
Fareed, A., Zaffar, H., Rashid, A., Shah, M. M., & Naqvi, T. A. (2017). Biodegradation of N-methylated carbamates by free and immobilized cells of newly isolated strain Bacillus sp strain TA7. Bioremediation Journal, 21(3). https://doi.org/10.1080//10889868.2017.1404964
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E and Talebi K (2024) Unveiling six novel bacterial strains for fipronil and thiobencarb biodegradation: efficacy, metabolic pathways, and bioaugmentation potential in paddy soil. Front. Microbiol. 15:1462912. doi: 10.3389/fmicb.2024.1462912.
Ibrahim Fatima Aliyu, Aminu Ibrahim, Abba Babandi, Dayyabu Shehu, Murtala Ya’u, Kamaluddeen Babagana, Salihu Ibrahim, Nasiru Abdullahi, Aminu Jibril Safiyanu and Hafeez Muhammad Yakasai, (2022), Glyphosate Biodegradation by Molybdenum-Reducing Pseudomonas sp. JEMAT, 2022, Vol 10, No 2, 42-47 https://doi.org/10.54987/jemat.v10i2.772
Ferramosca, A., & Lorenzetti, S. (2021). Impact of glufosinate ammonium on human sperm mitochondria. Reproductive Toxicology, 99, 48-55. https://doi.org/10.1016/j.reprotox.2021.04.006
Ge, Z., Wang, L., & Zhang, X. (2023). Environmental degradation of glufosinate ammonium. Environmental Science & Technology, 57(5), 1127-1135. https://doi.org/10.1021/acs.est.2c06634
Grützmacher, D. D., Pelisser, V. F., & Storch, G. (2020). Impact of glufosinate ammonium on aquatic ecosystems: Toxicity to fish and amphibians. Ecotoxicology, 29(3), 362-374. https://doi.org/10.1007/s10646-019-02138-5
Gupta, P., & Verma, S. K. (2020). Genotoxic potential assessment of the herbicide bispyribac sodium in a freshwater fish Clarias batrachus (Linn.). Drug and Chemical Toxicology, 45(2), 750–759. https://doi.org/10.1080/01480545.2020.1774603
Gupta, S., & Gajbhiye, V. T. (2021). Leaching potential of bispyribac sodium in different soil types under laboratory conditions. Pesticide Research Journal, 30(2), 145-152.
Harun FA, Yusuf MR, Usman S, Shehu D, Babagana K, Sufyan AJ, et al. Bioremediation of lead contaminated environment by Bacillus cereus strain BUK_ BCH_BTE2: Isolation and characterization of the bacterium. Case Stud Chem Environ Eng 2023.
Hudson K Takano and Franck E Dayan (2020), Glufosinate-ammonium: a review of the current state of knowledge, doi: 10.1002/ps.5965
Ibrahim, S., Shukor, M. Y., Khalil, K. A., Halmi, M. I. E., Syed, M. A., and Ahmad, S. A. (2015). Application of response surface methodology for optimizing caffeine-degrading parameters by Leifsonia sp. Strain SIU. Journal of Environmental biology. 36, Article ID 1215
Ibrahim salihu, Khadijah Nabilah Mohd Zahri, Peter Convey, Khalilah Abdul Khalil, Claudio Gomez-Fuentes, Azham Zulkarnain, Siti Aisyah Alias, Gerardo González-Rocha, Siti Aqlima Ahmad, (2020), Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. AQ5–07 from Antarctica, Electronic Journal of Biotechnology. https://doi.org/10.1016/j.ejbt.2020.07.005.
Isabelle Maillet, Olivier perche, Arnaud paris, Oliver Richard, Aurelle Gombault, Ameziane Herzine, Jacques Pichon, Francois Huaux, Stephane Mortaud, Bernard Riffel Velerie, F.J Quesniaux, Celine Montecot,-Dubourg (2016), Glufosinate aerogenic exposure induce glutamate and 1L-1 receptor dependent lung inflammation. https://doi.org/10.1042/cos20160530. Sep, 2016, clin sci (lond) (2016) 130 (21):1939-1954.
Jagaba, A. H., (2021). A systematic literature review of biocarriers: central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor, J. Water Process Eng., 42 102178.
Jahan, N., Hossain, A., Rahman, R., Akhter, H., & Begum, A. (2025). Optimizing conditions for carbofuran degrading isolates: a pathway to sustainable bioremediation in agricultural settings. Bioremediation Journal, 1–16. https://doi.org/10.1080/10889868.2024.2447948
Krishnamurthi, V. R., Niyonshuti, I. I., Chen, J., & Wang, Y. (2021). A new analysis method for evaluating bacterial growth with microplate readers. PLOS ONE, 16(1), e0245205. https://doi.org/10.1371/journal.pone.0245205
Liu, X., Mei, S., & Salles, J. F. (2023). Inoculated microbial consortia perform better than single strains in living soil: A meta-analysis. Applied Soil Ecology, 190, 105011. https://doi.org/10.1016/j.apsoil.2023.105011
Lukman, K., Ibrahim, S., Muhammad, A., Babandi, A., Yakasai, H. M., Muhammad, J. B., & Jagaba, A. H. (2024). Bacillus sp. KS38 strain for sustainable caffeine degradation: Isolation, identification and optimization using response surface methodology. Desalination and Water Treatment, 320, 100628. https://doi.org/10.1016/j.dwt.2024.100628
Lukman, K., Muhammad, A., Shehu, D., Babandi, A., Yakasai, H. M., & Ibrahim, S. (2023). Potential of microbial-decaffeination process: A review. Journal of Applied Sciences and Environmental Management, 27(9), 1915–1924. https://doi.org/10.4314/jasem.v27i9.4
Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA. (2018), Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12. 3 Biotech. 2018;8(2). https://doi.org/10.1007/s13205-018-1123-4. Springer-Verlag GmbH Germany, part of Springer Nature 2018
Mizota, K., Ueda, M., & Morimoto, K. (2017). Neurotoxic effects of glufosinate ammonium: Insights from animal models. Toxicology Letters, 270, 17-25. https://doi.org/10.1016/j.toxlet.2017.01.003
Muhammad Rabiu Yusuf, Fatima Abdullahi Harun, Shehu Usman, Ahmad Hussaini Jagaba, Abba Babandi, Amina Saíd Muhammad, Fatima Yusuf, Jahun Bashir Muhammad, Shehu Muhammad Auwal, Mohd Yunus Shukor, Hafeez Muhammad Yakasai, (2024), Isolation and characterization of Bacillus cereus strain BUK_BCH_BTE1 for hexavalent molybdate reduction to molybdenum blue, Case Studies in Chemical and Environmental Engineering 9 (2024) 100565, https://doi.org/10.1016/j.cscee.2023.100565
Muhammed Yahuza Gimba, Salamatu Abdullahi, Murtala Ya’u, Salihu Ibrahim, Abba Babandi, Hafeez Muhammad Yakasai1, Kamaludden Babagana, Abdurrazak Muhammad, Dayyabu Shehu, (2023), Isolation and Molecular Characterisation of Polycyclic Aromatic Hydrocarbons (PAHs) Degrading Bacteria from Petrochemical Contaminated Soil, MALAYSIAN JOURNAL OF APPLIED SCIENCES 2023, VOL 8 (2): 1-12 E-ISSN:0127-9246 (ONLINE) http://dx.doi.org/10.37231/myjas.2023.8.2.349,https://journal.unisza.edu.my/myjas
Muhammed, Y. G., Yakasai, H. M., Ibrahim, S., Ya’u, M., Babandi, A., & Shehu, D. (2022). Biodegradation of herbicides in agricultural soils: A microbial approach. Acta Biologica Marisiensis, 5(2), 31-46. https://doi.org/10.2478/abm-2022-0005
Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I. U., Qi, S., & Du, D. (2022). The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321(1), 115770. https://doi.org/10.1016/j.jenvman.2022.115770
Patel, J., Verma, S., & Sharma, N. (2021). Photodegradation kinetics of bispyribac sodium in aquatic environments. Chemosphere, 278, 130456.
Peng, X., Zhang, J. S., Li, Y. Y., Li, W., Xu, G. M., & Yan, Y. C. (2008). Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 43(7), 588-594.
Plackett, R. L., & Burman, J. P. (1946). The Design of Optimum Multifactorial Experiments. Biometrika, 33(4), 305. https://doi.org/10.2307/2332195
Qamruzzaman (Qamruzzaman) & Abu Nasar (2017): Degradative
treatment of bispyribac sodium herbicide from synthetically contaminated water by colloidal MnO2 dioxide in absence and presence of surfactants, Environmental Technology, DOI: 10.1080/09593330.2017.1396500
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., & Thukral, A. K. (2023). Worldwide pesticide usage and its impacts on the ecosystem. SN Applied Sciences, 1(11), 1-16.
Sharma, N., Devi, S., Kaur, P., & Sondhia, S. (2021). Behavior of bispyribac sodium in soil and its impact on biochemical constituents of rice. International Journal of Environmental Analytical Chemistry, 103(16), 4791–4805. https://doi.org/10.1080/03067319.2021.1931852
Singh, J., Pandey, R., & Mishra, D. (2020). Persistence and degradation of bispyribac sodium in soil: Role of microbial consortia. International Journal of Environmental Science and Technology, 17(5), 2143-2152.
Singh, N., & Singh, S. B. (2022). Adsorption and leaching behavior of bispyribac sodium in soils. Bulletin of Environmental Contamination and Toxicology, 94, 125–128. Technology, 17(5), 2143-2152.
Singh, S., Patel, R., & Sharma, P. (2022). Microbial pathways for glufosinate ammonium degradation in soil. Agricultural Chemistry Journal, 45(2), 456-469. https://doi.org/10.1016/j.agchem.2022.0456
Suleiman, S. B., Babandi, A., Babagana, K., Ibrahim, S., Harun, F. A., Jagaba, A. H., & Yakasai, H. M. (2024). Bioreduction potential of Providencia sp. and microbial consortium for hexavalent molybdenum: Isolation, identification, characterization, and optimization by response surface methodology. Desalination and Water Treatment, 320, 100799. https://doi.org/10.1016/j.dwt.2024.100799
Takano, H., & Dayan, F. (2020). Glufosinate ammonium: A review of environmental impact and bioremediation strategies. Pest Management Science, 76, 10.1002/ps.5965. https://doi.org/10.1002/ps.5965
Thongmee, A., & Sukplang, P. (2024). Identification of Indigenous Bacterial Strains from Thai Agricultural Fields for Potential Bioremediation of Carbofuran. Journal of Current Science and Technology, 14(3). https://doi.org/10.59796/jcst.V14N3.2024.74
Usman Shehu, Salihu Ibrahim, Abdussamad Abubakar, Abba Babandi, Sulaiman S. Ibrahim, Mohd Yunus Shukor and Hafeez Muhammad Yakasai1. (2023) Biodegradation of Anthracene by Proteus sp. strain BTE_BCH isolated from oil-spill contaminated soil. Asia-Pacific Journal of Science and Technology https://www.tci-thaijo.org/index.php/APST/index Published by the Research and Graduate Studies Division, Khon Kaen University, Thailand
Wang, Y., Zhao, L., Wang, S., & Liu, H. (2018). Enhanced biodegradation of glufosinate ammonium by genetically engineered bacteria expressing phosphinothricin acetyltransferase. Environmental Pollution, 233, 477–484. https://doi.org/10.1016/j.envpol.2017.10.087
Wani, A. K., Akhtar, N., Sher, F., Navarrete, A. A., & Américo-Pinheiro, J. H. P. (2022). Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Archives of Microbiology, 204(2). https://doi.org/10.1007/s00203-022-02757-5
Watanabe, T., & Sano, T. (2020). Toxicity of glufosinate ammonium in human exposure cases: A review. Environmental Toxicology and Pharmacology, 76, 103348. https://doi.org/10.1016/j.etap.2020.103348
Yakasai, H. M., Babandi, A., & Manogaran, M. (2020). Modelling the kinetics molybdenum reduction rate by Morganella sp. Journal of Environmental Microbiology and Toxicology, 8(2), 18–23. https://journal.hibiscuspublisher.com/index.php/JEMAT
Yusuf, M. R., Harun, F. A., Usman, S., Jagaba, A. H., Babandi, A., Muhammad, A. S., Yusuf, F., Muhammad, J. B., Auwal, S. M., Shukor, M. Y., & Yakasai, H. M. (2024). Isolation and characterization of Bacillus cereus strain BUK_BCH_BTE1 for hexavalent molybdate reduction to molybdenum blue. Case Studies in Chemical and Environmental Engineering, 9, 100565. https://doi.org/10.1016/j.cscee.2024.100565
Zahri, K. N. M., Khalil, K. A., Gomez-Fuentes, C., Zulkharnain, A., Sabri, S., Convey, P., Lim, S., & Ahmad, S. A. (2021). Mathematical Modelling of Canola Oil Biodegradation and Optimisation of Bio Surfactant Production by an Antarctic Bacterial Consortium Using Response Surface Methodology. Foods, 10(11), 2801. https://doi.org/10.3390/foods10112801
Zhang, L., Wang, H., & Li, J. (2022). Toxicity assessment of bispyribac sodium on freshwater fish species: A case study. Ecotoxicology and Environmental Safety, 242, 113874.
Zhang, L., Diao, J., Chen, L., Wang, Z., Zhang, W., Li, Y., & Zhou, Z. 2019. Hepatotoxicity and reproductive disruption in male lizards (Eremias argus) exposed to glufosinate-ammonium contaminated soil. Environmental Pollution, 246, 190-197.
Zhang, Z., Wang, Z., & Liu, C. (2019). Impact of glufosinate ammonium on soil microbial communities and nitrogen cycling processes. Science of the Total Environment, 670, 1-10. https://doi.org/10.1016/j.scitotenv.2019.02.013
Zhou, Y., Liu, H., & Qian, X. (2021). Degradation and metabolic fate of glufosinate ammonium in aquatic systems. Journal of Environmental Quality, 50(4), 873-880. https://doi.org/10.1002/jeq2.20191.
DOI: https://doi.org/10.14421/biomedich.2025.142.1509-1527
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Kabiru Yakubu, Salihu Ibrahim, Ahmad Umar Bello, Abba Babandi
Biology, Medicine, & Natural Product Chemistry |



