Antidiabetic, Antioxidant, and Gut Microbiota-Modulating Effects of Cymbopogon citratus Leaf Extract in Nicotinamide-Streptozotocin Induced Diabetic Rats
Abstract
Cymbopogon citratus Leaf Extract (CCE) is used traditionally to manage diabetes mellitus. The study aimed to to evaluate the effects of its oral administration on gut bacteria composition and antidiabetic effect in nicotinamide and streptozotocin-induced diabetic rats. Thirty-five male Wistar rats were divided into five groups comprising 7 rats each. They were; non-diabetic rats given distilled water (PC), untreated diabetic rats (NC), diabetic rats treated with 2.5 mg/kg glibenclamide (RDC), diabetic rats treated with 200 mg/kg extract (CCE1) and diabetic rats treated with 400 mg/kg extract (CCE2). Fasting blood glucose (FBG), insulin, glycogen, lipid profile, catalase, superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA), serum electrolytes, urea, uric acid, creatinine, bilirubin, albumin, alanine and aspartate amino transferases (ALT, AST), alkaline phosphatase (ALP), gut bacterial count were analysed and bacteria identified. Secondary metabolites in extract were also quantified. Results showed significant reductions (p<0.05) in FBG, low density lipoprotein, triglycerides, cholesterol, urea, sodium, catalase, SOD, GSH, and MDA levels in the CCE1 and CCE2 groups compared to the NC. Glycogen, ALT, AST, ALP, and HDL increased significantly. CCE1 outperformed CCE2 in most biochemical parameters. The total bacterial count increased significantly in the treatment groups and the identified species were L. plantarum, L. lactis, C. leptum and, L. mesenteroides. Key secondary metabolites in CCE were catechin, dihydrocytisine, steroid, aphyllidine, Narigenin, proanthocyanidine, oxalate and phytate. In conclusion, CCE exhibited glucose-lowering, antihyperlipidemic, and antioxidant effects, reversed dysfunction in organ function markers and promoted occurrence of beneficial bacterial. Further research into its nutraceutical potential is recommended.
Keywords
Full Text:
PDFReferences
Addepalli, V., & Suryavanshi, S. V. (2018). Catechin attenuates diabetic autonomic neuropathy in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 108, 1517–1523. https://doi.org/10.1016/j.biopha.2018.09.179
Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(4), 174–188. https://doi.org/10.4103/ajm.ajm_53_20
Byndloss, M., Devkota, S., Duca, F., Niess, J. H., Nieuwdorp, M., Orho-Melander, M., Sanz, Y., Tremaroli, V., & Zhao, L. (2024). The gut microbiota and diabetes: Research, translation, and clinical applications—2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia, 67(9), 1760–1782. https://doi.org/10.1007/s00125-024-06198-1
Cheesebrough, M. (2014). District laboratory practice in tropical countries (2nd ed.). Cambridge University Press.
Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S., & Kalantar, K. (2020). The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers in Immunology, 11, 1582. https://doi.org/10.3389/fimmu.2020.01582
DeFronzo, R. A., Reeves, W. B., & Awad, A. S. (2021). Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nature Reviews Nephrology, 17, 319–334.
Den Hartogh, D. J., Gabriel, A., & Tsiani, E. (2019). Antidiabetic properties of curcumin II: Evidence from in vivo studies. Nutrients, 12(1), 58. https://doi.org/10.3390/nu12010058
Ding, M., Tang, Z., Liu, W., Shao, T., Yuan, P., Chen, K., Zhou, Y., Han, J., Zhang, J., & Wang, G. (2021). Burdock fructooligosaccharide attenuates high glucose-induced apoptosis and oxidative stress injury in renal tubular epithelial cells. Frontiers in Pharmacology, 12, 784187.
Garba, H. A., Mohammed, A., & Ibrahim, M. A. (2020). Effect of lemongrass (Cymbopogon citratus Stapf) tea in a type 2 diabetes rat model. Clinical Phytoscience, 6, 19. https://doi.org/10.1186/s40816-020-00167-y
Global Burden of Disease Collaborative Network. (2024). Global Burden of Disease Study 2021 results. Institute for Health Metrics and Evaluation. https://vizhub.healthdata.org/gbd-results/
Han, D., Hanawa, N., Saberi, B., & Kaplowitz, N. (2006). Mechanisms of liver injury: III. Role of glutathione redox status in liver injury. American Journal of Physiology-Gastrointestinal and Liver Physiology, 291(1), G1–G7. https://doi.org/10.1152/ajpgi.00001.2006
Hossain, M. J., Al-Mamun, M., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3), e2004. https://doi.org/10.1002/hsr2.2004
Jha, R., Lopez-Trevino, S., Kankanamalage, H. R., & Jha, J. C. (2024). Diabetes and renal complications: An overview on pathophysiology, biomarkers, and therapeutic interventions. Biomedicines, 12(5), 1098. https://doi.org/10.3390/biomedicines12051098
Júnior, A. S. S., Aidar, F. J., Silva, L. A. S., de B. Silva, T., de Almeida, S. F. M., Teles, D. C. S., de L. Junior, W., Schimieguel, D. M., de Souza, D. A., Nascimento, A. C. S., Camargo, E. A., Dos Santos, J. L., de O. E. Silva, A. M., de S. Nunes, R., Borges, L. P., & Lira, A. A. M. (2024). Influence of lemongrass essential oil (Cymbopogon flexuosus) supplementation on diabetes in a rat model. Life, 14(3), 336. https://doi.org/10.3390/life14030336
Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W., Stiekema, W., Lankhorst, R. M., Bron, P. A., Hoffer, S. M., Groot, M. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990–1995. https://doi.org/10.1073/pnas.0337704100
Leung, T. M., & Nieto, N. (2013). CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. Journal of Hepatology, 58(2), 395–398. https://doi.org/10.1016/j.jhep.2012.08.018
Levinthal, G. N., & Tavill, A. S. (1999). Liver disease and diabetes mellitus. Clinical Diabetes, 17(3), 73–79.
Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419.
Michael, G. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/j.cofs.2015.03.001
Mohamed, J., Nazratun Nafizah, A. H., Zariyantey, A. H., & Budin, S. B. (2016). Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal, 16(2), e132–e141. https://doi.org/10.18295/squmj.2016.16.02.002
Omoya, F. O., & Momoh, A. O. (2019). Comparative effects of garlic, yoghurt, beniseed liquor and fresh orange juice on induced type-1 diabetes mellitus in rabbits using streptozotocin. Journal of Food & Nutritional Disorders, 8(4), 1–9.
Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137
Parveen, K., Khan, M. R., Mujeeb, M., & Siddiqui, W. A. (2010). Protective effects of pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chemico-Biological Interactions, 186(2), 219–227. https://doi.org/10.1016/j.cbi.2010.04.023
Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 279(1), 70–89. https://doi.org/10.1111/imr.12567
Shah, G., Shri, R., Panchal, V., Sharma, N., Singh, B., & Mann, A. S. (2011). Scientific basis for the therapeutic use of Cymbopogon citratus Stapf (lemongrass). Journal of Advanced Pharmaceutical Technology & Research, 2(1), 3–8. https://doi.org/10.4103/2231-4040.79796
Welt, K., Weiss, J., Martin, R., Dettmer, D., Hermsdorf, T., Asayama, K., et al. (2004). Ultrastructural, immunohistochemical and biochemical investigations of the rat liver exposed to experimental diabetes and acute hypoxia with and without application of Ginkgo extract. Experimental and Toxicologic Pathology, 55(5), 331–345. https://doi.org/10.1078/0940-2993-00337
Yang, Y., Chen, Z., Zhao, X., Xie, H., Du, L., Gao, H., & Xie, C. (2022). Mechanisms of kaempferol in the treatment of diabetes: A comprehensive and latest review. Frontiers in Endocrinology, 13, 990299.
DOI: https://doi.org/10.14421/biomedich.2025.142.1403-1411
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Omolola Soji-Omoniwa, Oluwadamilola Elizabeth Britto, Precious Comfort Omogoye, Oluwafemi Obed Oluwadare, Darasimi Deborah Adeosun, Mariam Oyeladun Alimi, Ridwan Tobiloba Bolajoko, Celestina Omowumi Amupitan, Emmanuel Ayokanmi Olufemi, Esther Afifoluwake
Biology, Medicine, & Natural Product Chemistry |




