Total Phenol Content, Total Flavonoid Content, Antioxidant Activity and GC-MS Analysis of a New Variety of Rice (Oryza sativa L.)
Abstract
Consuming foods rich in antioxidants plays an important role in human health, one of which is through rice. This research aimed to describe the total phenol content and total flavonoids content as well as GC-MS analysis of raw Baroma rice extract and analyze the antioxidant activity of Baroma rice in different cooking methods. Baroma rice was collected from Semarang, Central Java, Indonesia thus was analyzed to get data about total phenol content, total flavonoid content, and compouds identifies using GC-MS. We also analyzed antioxidant activity of Baroma rice among raw, rice cooked in stove and magic com extract using Anova test followed by Tukey test. The result proved that total phenol content was 85.64 mg/L and total flavonoid content was 78.28 mg/L, meanwhile the highest antioxidant activity was in raw extract of Baroma followed by rice cooked in magic com and stove, suggesting that cooking method effected on its property. GC-MS analysis showed the diversity of chemical compound, totaling 15 compounds and peaks.
Keywords
Full Text:
PDFReferences
Akmalia, H. A., Febriana, A., Pranatami, D. A., & Adawiyah, P. R. (2024). Nutritional Status of Baroma Rice in Different Cooking Methods. Jurnal Gizi Dan Pangan Soedirman, 8(2), 204. https://doi.org/10.20884/1.jgipas.2024.8.2.12808
Aleixandre, A., Gil, J. V., Sineiro, J., & Rosell, C. M. (2022). Understanding phenolic acids inhibition of ?-amylase and ?-glucosidase and influence of reaction conditions. In Food Chemistry (Vol. 372). https://doi.org/10.1016/j.foodchem.2021.131231
Arsana, I. N., Juliasih, N., Ayu Sauca Sunia Widyantari, A., Suriani, N., & Manto, A. (2022). GC-MS Analysis of the Active Compound in Ethanol Extracts of White Pepper (Piper nigrum L.) and Pharmacological Effects. Cellular, Molecular and Biomedical Reports, 2(3), 151–161. https://doi.org/10.55705/cmbr.2022.351720.1051
Bani, C., Cappa, C., Restani, P., Sala, M., Colombo, F., Mercogliano, F., & Di Lorenzo, C. (2024). Physicochemical and nutritional quality of pigmented rice and bran: Influence of milling and cooking. Lwt, 208(April). https://doi.org/10.1016/j.lwt.2024.116653
Banjarnahor, S. D. S., & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. https://doi.org/10.13181/mji.v23i4.1015
Bello, A. A., Issa, N., Mawardi, K., & Batch, A. (2025). Antioxidant Activity of Some Apiaceae Plants Wild Distributed in Aleppo, Syria. South African Journal of Chemical Engineering, 54(August), 200–209. https://doi.org/10.1016/j.sajce.2025.08.003
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progress in Lipid Research, 82(January). https://doi.org/10.1016/j.plipres.2021.101093
Chen, Y., Luo, J., Wan, N., Jiang, J., & Dai, G. (2021). Carmine spider mite Tetranychus cinnabarinus control: Laboratory and field efficacy and biochemical characterization of 2, 4-di-tertbutylphenol and ethyl oleate. Crop Protection, 139(September 2020), 105390. https://doi.org/10.1016/j.cropro.2020.105390
Colasanto, A., Travaglia, F., Bordiga, M., Coïsson, J. D., Arlorio, M., & Locatelli, M. (2024). Impact of traditional and innovative cooking techniques on Italian black rice (Oryza sativa L., Artemide cv) composition. Food Research International, 194(June). https://doi.org/10.1016/j.foodres.2024.114906
Das, M., Dash, U., Mahanand, S. S., Nayak, P. K., & Kesavan, R. K. (2023). Black rice: A comprehensive review on its bioactive compounds, potential health benefits and food applications. Food Chemistry Advances, 3(September). https://doi.org/10.1016/j.focha.2023.100462
Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 1–16. https://doi.org/10.3390/molecules26175377
Dong, H., Chen, J., Zhang, H., Zhao, M., Yue, Y., & Wang, S. (2024). Palmitic acid inhibits macrophage-mediated chemotherapy resistance in multiple myeloma via ALOX12 signaling. International Immunopharmacology, 143(P1), 113320. https://doi.org/10.1016/j.intimp.2024.113320
Elias-Llumbet, A., Sharmin, R., Berg-Sorensen, K., Schirhagl, R., & Mzyk, A. (2024). The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Advanced Healthcare Materials, 13(23). https://doi.org/10.1002/adhm.202400952
Feng, Y., Fu, T. X., Zhang, L., Wang, C., & Zhang, D. (2019). Research on differential metabolites in distinction of rice (Oryza sativa L.) origin based on GC-MS. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/1614504
Fracassetti, D., Pozzoli, C., Vitalini, S., Tirelli, A., & Iriti, M. (2020). Impact of cooking on bioactive compounds and antioxidant activity of pigmented rice cultivars. Foods, 9(8), 1–12. https://doi.org/10.3390/foods9080967
Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z. E., & Rahmat, A. (2018). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), 1–13. https://doi.org/10.1186/s13065-018-0382-9
Gong, E. S., Luo, S. J., Li, T., Liu, C. M., Zhang, G. W., Chen, J., Zeng, Z. C., & Liu, R. H. (2017). Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chemistry, 227, 432–443. https://doi.org/10.1016/J.FOODCHEM.2017.01.093
Govindarasu, S., & Murugesh, S. (2025). Secondary metabolite based anti-inflammatory, antioxidant activities, drug like properties, molecular docking enzyme inhibitors of selected medicinal plant Bacopa monnieri (L)Wettst. Microbe (Netherlands), 8(June), 100478. https://doi.org/10.1016/j.microb.2025.100478
Guo, H., Liu, Z., Li, J., Nie, S., & Pan, W. (2006). Effects of isopropyl palmitate on the skin permeation of drugs. Biological and Pharmaceutical Bulletin, 29(11), 2324–2326. https://doi.org/10.1248/bpb.29.2324
Hamilton-Amachree, A., & Uzoekwe, S. A. (2017). GC-MS Analysis of Oil Rich in Polyenoic Fatty Acid Methyl Esters from Leaves of Justicia Secunda Vahl Growing Abundantly in The Lowland Rain Forests of The Niger Delta Region of Nigeria. American Journal of Essential Oils and Natural Products, 5(4), 1–04.
Hu, S., Ren, H., Song, Y., Liu, F., Qian, L., Zuo, F., & Meng, L. (2023). Analysis of volatile compounds by GCMS reveals their rice cultivars. Scientific Reports, 13(1), 1–10. https://doi.org/10.1038/s41598-023-34797-2
Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual role of reactive oxygen species and their application in cancer therapy. Journal of Cancer, 12(18), 5543–5561. https://doi.org/10.7150/jca.54699
Huang, Y. P., & Lai, H. M. (2016). Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis, 24(3), 564–574. https://doi.org/10.1016/j.jfda.2016.01.004
Katisart, T., Karirat, T., Saengha, W., Promjamorn, P., Senakun, C., Kaewsri, W., Deeseenthum, S., Somboonwatthanakul, I., Butkhup, L., Sungsri-In, M., Moongngarm, A., Ma, N. L., & Luang-In, V. (2025). Exploring phytochemical profile, antioxidant and anticancer activities of underexploited edible wild plant Bauhinia saccocalyx Pierre leaf extract native to Thailand. Journal of Agriculture and Food Research, 23(August), 102279. https://doi.org/10.1016/j.jafr.2025.102279
Khromykh, N. O., Lykholat, Y. V., Didur, O. O., Sklyar, T. V., Davydov, V. R., Lavrentiev?, K. V., & Lykholat, T. Y. (2022). Phytochemical profiles, antioxidant and antimicrobial activity of Actinidia polygama and A. arguta fruits and leaves. Biosystems Diversity, 30(1), 39–45. https://doi.org/10.15421/012205
Krishnaveni, M., Dhanalakshmi, R., & Nandhini, N. (2014). GC-MS analysis of phytochemicals, fatty acid profile, antimicrobial activity of gossypium seeds. International Journal of Pharmaceutical Sciences Review and Research, 27(1), 273–276.
Kusumawardani, S., & Luangsakul, N. (2024). Assessment of polyphenols in purple and red rice bran: Phenolic profiles, antioxidant activities, and mechanism of inhibition against amylolytic enzymes. Current Research in Food Science, 9(July), 100828. https://doi.org/10.1016/j.crfs.2024.100828
Li, X., Li, B., Podio, N. S., Wang, X. Y., Jiang, S., Xu, S., Qiu, X., Zeng, Z., Gong, W., Wang, S., & Gong, E. S. (2024). Untargeted metabolomics profiling of purple rice phenolics and their antioxidant activities. Lwt, 214(September). https://doi.org/10.1016/j.lwt.2024.117127
Mohebbifar, M. R. (2021). Study of the effect of temperature on thermophysical properties of ethyl myristate by dual-beam thermal lens technique. Optik, 247(September), 168000. https://doi.org/10.1016/j.ijleo.2021.168000
Ohiri, R. C., Amadi, B. A., & Onwuzuruike, D. T. (2023). Variations in Confinement of Bioactive Components in Different Sections of Spondias mombin Tree. Journal of Applied Sciences and Environmental Management, 27(3), 483–493. https://doi.org/10.4314/jasem.v27i3.11
Onoabedje, U. S., Ezugwu, C. O., & Onoabedje, E. A. (2025). Antimicrobial properties of 9, 12-octadecadienoic acid isolated from leaf extracts of Acalypha fimbriata (Euphorbiaceae). Communication in Physical Sciences, 12(2), 1061–1069. https://doi.org/10.4314/cps.v12i2.27
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry and Biodiversity, 18(11). https://doi.org/10.1002/cbdv.202100345
Phanthurat, N., & Thatsanasuwan, N. (2023). A comparative study regrading traditional cooking processes in Northern Thailand influence phytochemical content, antioxidant capacity and inhibition of key enzyme activity in glutinous rice. Journal of Agriculture and Food Research, 14(September), 100820. https://doi.org/10.1016/j.jafr.2023.100820
Phuong, L. H., Van Thanh, N., & Binh, L. N. (2025). Volatile compound profile of rice bran extract: Gas chromatography-mass spectrometry optimization and the impact of processing and storage. Journal of Agriculture and Food Research, 19(December 2024). https://doi.org/10.1016/j.jafr.2025.101730
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8416763
Pranatami, D. A., & Akmalia, H. A. (2025). Potential of baroma rice as anti-cancer food candidate via cell cycle arrest and apoptosis. Jurnal Teknosains, 14(2), 126. https://doi.org/10.22146/teknosains.101243
Qin, L., Zhu, W., Yang, L., Zheng, M., & Liu, G. (2025). Persistent free radicals in the environment. Journal of Hazardous Materials, 493(March), 310024. https://doi.org/10.1016/j.jhazmat.2025.138332
Saeed, N. M., El-Demerdash, E., Abdel-Rahman, H. M., Algandaby, M. M., Al-Abbasi, F. A., & Abdel-Naim, A. B. (2012). Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicology and Applied Pharmacology, 264(1), 84–93. https://doi.org/10.1016/j.taap.2012.07.020
Sagna, A., Nair, R. V. R., Hulyalkar, N., Rajasekharan, S., Nair, V. T. G., Sivakumar, K. C., Suja, S. R., Baby, S., & Sreekumar, E. (2023). Ethyl palmitate, an anti-chikungunya virus principle from Sauropus androgynus, a medicinal plant used to alleviate fever in ethnomedicine. Journal of Ethnopharmacology, 309(January), 116366. https://doi.org/10.1016/j.jep.2023.116366
Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014). Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59(2), 211–218. https://doi.org/10.1016/j.jcs.2014.01.004
Singh, N., Mansoori, A., Jiwani, G., Solanke, A. U., Thakur, T. K., Kumar, R., Chaurasiya, M., & Kumar, A. (2021). Antioxidant and antimicrobial study of Schefflera vinosa leaves crude extracts against rice pathogens. Arabian Journal of Chemistry, 14(7), 103243. https://doi.org/10.1016/j.arabjc.2021.103243
Sokeng, S. D., Talla, E., Sakava, P., Fokam Tagne, M. A., Henoumont, C., Sophie, L., Mbafor, J. T., & Tchuenguem Fohouo, F. N. (2020). Anti-Inflammatory and Analgesic Effect of Arachic Acid Ethyl Ester Isolated from Propolis. BioMed Research International, 2020. https://doi.org/10.1155/2020/8797284
Subedi, L., Timalsena, S., Duwadi, P., Thapa, R., Paudel, A., & Parajuli, K. (2014). Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. Journal of Traditional Chinese Medicine, 34(5), 584–590. https://doi.org/10.1016/s0254-6272(15)30067-4
Sulochana, S., Meyyappan, R. M., & Singaravadivel, K. (2016). Phytochemical Screening and Gc-Ms Analysis of Garudan Samba Traditional Rice Variety. International Journal of Environment and Agricultural Research, 4, 44–47.
Suryanti, V., Riyatun, Suharyana, Sutarno, & Saputra, O. A. (2020). Antioxidant activity and compound constituents of gamma-irradiated black rice (Oryza sativa l.) var. cempo ireng indigenous of Indonesia. Biodiversitas, 21(9), 4205–4212. https://doi.org/10.13057/biodiv/d210935
Tang, Y., Cai, W., & Xu, B. (2016). From rice bag to table: Fate of phenolic chemical compositions and antioxidant activities in waxy and non-waxy black rice during home cooking. Food Chemistry, 191, 81–90. https://doi.org/10.1016/j.foodchem.2015.02.001
Villanueva-Bermejo, D., Martín Hernández, D., Hurtado-Ribeira, R., Hernández, E. J., Fornari, T., Martin, D., & Vázquez, L. (2025). Supercritical concentration of ethyl laurate from coconut oil. Lwt, 225(July 2024). https://doi.org/10.1016/j.lwt.2025.117928
Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications review-Article. Cell Death and Disease, 9(2). https://doi.org/10.1038/s41419-017-0135-z
Windiyani, H., & Rusdianto, S. W. (2020). Keragaman Varietas Unggul Baru Padi Fungsional Mendukung Ketahanan Pangan dalam Menghadapi Pandemi COVID-19. Seminar Nasional Lahan …, 978–979. http://www.conference.unsri.ac.id/index.php/lahansuboptimal/article/view/1964
Wiraswati, H. L., Fauziah, N., Pradini, G. W., Kurnia, D., Kodir, R. A., Berbudi, A., Arimdayu, A. R., Laelalugina, A., Supandi, & Ma’ruf, I. F. (2023). Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites, 13(2). https://doi.org/10.3390/metabo13020281
Woo, K. S., Kim, H. J., Lee, J. H., Ko, J. Y., Lee, B. W., & Lee, B. K. (2018). Cooking characteristics and antioxidant activity of rice-barley mix at different cooking method and mixing ratio. Preventive Nutrition and Food Science, 23(1), 52–59. https://doi.org/10.3746/pnf.2018.23.1.52
Wu, Z., Li, L., Li, N., Zhang, T., Pu, Y., Zhang, X., Zhang, Y., & Wang, B. (2017). Optimization of ultrasonic-assisted extraction of fatty acids in seeds of Brucea javanica (L.) Merr. from different sources and simultaneous analysis using high-performance liquid chromatography with charged aerosol detection. Molecules, 22(6), 1–15. https://doi.org/10.3390/molecules22060931
Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International, 157(February), 111268. https://doi.org/10.1016/j.foodres.2022.111268
DOI: https://doi.org/10.14421/biomedich.2025.142.1469-1476
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Hafidha Asni Akmalia, Dwimei Ayudewandari Pranatami
Biology, Medicine, & Natural Product Chemistry |



