Radar absorbing Films Based on Chitosan–Polyvinyl Alcohol Incorporated with Hydroxyapatite from Yellowfin Tuna Bone Waste

Fran Denis Sitohang, Muhammad Hibban Fadlurrohman Ayyasy, Esa Ghanim Fadhallah

Abstract


Radar absorbing films (RAF) play a crucial role in stealth technology by reducing radar reflections and thereby lowering the detectability of objects. Conventional inorganic absorbers such as ferrite and carbon are effective but present limitations due to their high density, cost, and limited environmental compatibility. These challenges have driven interest in developing lightweight, sustainable, and polymer-based alternatives. Yellowfin tuna bone waste, containing approximately 60–70% minerals predominantly composed of hydroxyapatite, offers a promising source for enhancing electromagnetic absorption while simultaneously supporting waste valorization. This study aimed to evaluate the mechanical and electromagnetic properties of RAF from chitosan, polyvinyl alcohol (PVA), and hydroxyapatite derived from yellowfin tuna bone waste. The films were produced with varying chitosan concentrations (0%, 0.5%, 1%, 1.5%, 2%) and characterized for tensile strength, elongation, stiffness, and electromagnetic absorption across the 5–10 GHz frequency range. The tensile strength increased from 0.105 MPa in the control to 0.151 MPa at 2% chitosan, while elongation declined from 39% at 0.5% chitosan to 21% at 1.5% chitosan. The optimal absorption was observed at 1.5% chitosan, exhibiting a reflection loss of 14 dB at 8 GHz, which corresponds to approximately 96% absorption with only 4% reflection. Overall, the films demonstrated a favorable balance between mechanical integrity and electromagnetic wave absorption, highlighting their potential as lightweight, flexible, and environmentally sustainable radar absorbing materials.


Keywords


Chitosan; Mechanical Properties; Hydroxyapatite; Radar absorbing material; Yellowfin Tuna

Full Text:

PDF

References


Alanis-Gómez, R. P., Rivera-Muñoz, E. M., Luna-Barcenas, G., Alanis-Gómez, J. R., & Velázquez-Castillo, R. (2022). Improving the mechanical resistance of hydroxyapatite/chitosan composite materials made of nanofibers with crystalline preferential orientation. Materials, 15(13), 4718. doi:https://doi.org/10.3390/ma15134718

Amalia, B., Imawan, C., & Listyarini, A. (2018, October). Effect of nanofibril cellulose isolated from pineapple leaf on the mechanical properties of chitosan film. In AIP Conference Proceedings (Vol. 2023, No. 1, p. 020034). AIP Publishing LLC. doi:https://doi.org/10.1063/1.5064031

Bi, S., Wang, P., Hu, S., Li, S., Pang, J., Zhou, Z., ... & Chen, X. (2019). Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate polymers, 224, 115176. doi:https://doi.org/10.1016/j.carbpol.2019.115176

Chen, N., Wei, S., Shi, B., Yan, R., Li, X., & Zhan, T. (2021). Investigating the electromagnetic wave-absorbing capacity and mechanical properties of flexible radar-absorbing knitted compound materials. Journal of Industrial Textiles, 51(3), 343-361. doi:https://doi.org/10.1177/1528083719877006

Du, Y. (2022). Advances in carbon-based microwave absorbing materials. Materials, 15(4), 1359. doi:https://doi.org/10.3390/ma15041359

Hadi, F.B., & Farhan, A.J. (2025). Study of structural, mechanical and thermal properties of chitosan/PVA blend by casting method in different proportions. Experimental and Theoretical NANOTECHNOLOGY, 9(1), 167-178. doi:https://doi.org/10.56053/9.S.167

He, S., Hu, J., Chen, J., & Xi, Q. (2024, July). Study on the relationship between reflectivity and thickness of radar-absorbing material. In Journal of Physics: Conference Series (Vol. 2808, No. 1, p. 012084). IOP Publishing. doi:https://doi.org/10.1088/1742-6596/2808/1/012084

He, S., Su, T., He, L., Chen, J., & Xia, L. (2023, March). Inversion of equivalent electromagnetic parameters of multilayer absorbing materials based on simulated annealing algorithm. In Journal of Physics: Conference Series (Vol. 2447, No. 1, p. 012006). IOP Publishing. doi:http://dx.doi.org/10.1088/1742-6596/2447/1/012006

Jahan, M., Inakpenu, R. O., Li, K., & Zhao, G. (2019). Enhancing the mechanical strength for a microwave absorption composite based on graphene nanoplatelet/epoxy with carbon fibers. Open Journal of Composite Materials, 9(02), 230. doi:http://dx.doi.org/10.4236/ojcm.2019.92013

Kruželák, J., Kvasni?áková, A., Hložeková, K., & Hudec, I. (2021). Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advance, 3, 123-172. doi:https://doi.org/10.1039/D0NA00760A

Li, N., Huang, G. W., Li, Y. Q., Xiao, H. M., Feng, Q. P., Hu, N., & Fu, S. Y. (2017). Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS applied materials & interfaces, 9(3), 2973-2983. doi:https://doi.org/10.1021/acsami.6b13142

Mishra, S. P., Nath, G., & Mishra, P. (2020). Ultrasonically synthesized dielectric microwave absorbing material from coconut coir dust. Waste and Biomass Valorization, 11(4), 1481-1490. doi:https://doi.org/10.1007/s12649-018-0478-4

Mutmainnah, M., Chadijah, S., & Rustiah, W. O. (2017). Hidroksiapatit dari tulang ikan tuna sirip kuning (tunnus albacores) dengan metode presipitasi. Al-Kimia, 5(2), 119-26. doi:http://dx.doi.org/10.24252/al-kimia.v5i2.3422

Pugar, D., Haramina, T., Leskovac, M., & ?urkovi?, L. (2024). Preparation and characterization of poly (vinyl-alcohol)/chitosan polymer blend films chemically crosslinked with glutaraldehyde: Mechanical and thermal investigations. Molecules, 29(24), 5914. doi:https://doi.org/10.3390/molecules29245914

Ramesan, M.T., Menon, S.S., Kalladi, A.J., Abdulla, A.C.L., & Bahuleyan, B. (2024). Hydroxyapatite nanoparticles reinforced polyvinyl alcohol/chitosan blend for optical and energy storage applications. Polymer Engineering & Science, 64(3), 1378-1390. doi:http://dx.doi.org/10.1002/pen.26623

Soares, B.G., Barra, G.M.O., & Indrusiak, T. (2021). Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference Shielding/Microwave Absorbing Materials—A Review. Journal of Composites Science, 5(7), 173. doi:https://doi.org/10.3390/jcs5070173

Sofyan, N., Sany, F. N., Yuwono, A. H., & Dhaneswara, D. (2017). Characteristics of mixed polyvinyl alcohol and chitosan obtained from shrimp shells and squid pens for electromagnetic wave absorber. Int. J. Eng. Technol.(IJET), 9, 2581-2586. doi:https://doi.org/10.21817/ijet/2017/v9i3/1709030057

Vagananthan, B., Lee, Y. S., You, K. Y., Gan, H. S., & Wee, F. H. (2022). Investigate the effect of dielectric Technol.(IJETproperties on microwave absorption of pyramidal microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 21, 328-336. doi:https://doi.org/10.1590/2179-10742022v21i2257631

Yang, Y., Liang, Z., Zhang, R., Zhou, S., Yang, H., Chen, Y., Zhang, J., Yin, H., & Yu, D. (2024). Research advances in superabsorbent polymers. Polymers, 16(4), 501. doi:https://doi.org/10.3390/polym16040501

Zhang, B., Wang, J., Su, X., Duan, H., Cai, H., Wang, J., & Huo, S. (2017). Enhanced microwave absorption properties of epoxy composites containing graphene decorated with core–shell Fe3O4@ polypyrrole nanoparticles. Journal of Materials Science: Materials in Electronics, 28(16), 12122-12131. doi:https://doi.org/10.1007/s10854-017-7026-z




DOI: https://doi.org/10.14421/biomedich.2025.142.1413-1418

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Fran Denis Sitohang, Muhammad Hibban Fadlurrohman Ayyasy, Esa Ghanim Fadhallah



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC