Radar absorbing Films Based on Chitosan–Polyvinyl Alcohol Incorporated with Hydroxyapatite from Yellowfin Tuna Bone Waste
Abstract
Radar absorbing films (RAF) play a crucial role in stealth technology by reducing radar reflections and thereby lowering the detectability of objects. Conventional inorganic absorbers such as ferrite and carbon are effective but present limitations due to their high density, cost, and limited environmental compatibility. These challenges have driven interest in developing lightweight, sustainable, and polymer-based alternatives. Yellowfin tuna bone waste, containing approximately 60–70% minerals predominantly composed of hydroxyapatite, offers a promising source for enhancing electromagnetic absorption while simultaneously supporting waste valorization. This study aimed to evaluate the mechanical and electromagnetic properties of RAF from chitosan, polyvinyl alcohol (PVA), and hydroxyapatite derived from yellowfin tuna bone waste. The films were produced with varying chitosan concentrations (0%, 0.5%, 1%, 1.5%, 2%) and characterized for tensile strength, elongation, stiffness, and electromagnetic absorption across the 5–10 GHz frequency range. The tensile strength increased from 0.105 MPa in the control to 0.151 MPa at 2% chitosan, while elongation declined from 39% at 0.5% chitosan to 21% at 1.5% chitosan. The optimal absorption was observed at 1.5% chitosan, exhibiting a reflection loss of 14 dB at 8 GHz, which corresponds to approximately 96% absorption with only 4% reflection. Overall, the films demonstrated a favorable balance between mechanical integrity and electromagnetic wave absorption, highlighting their potential as lightweight, flexible, and environmentally sustainable radar absorbing materials.
Keywords
Full Text:
PDFReferences
Alanis-Gómez, R. P., Rivera-Muñoz, E. M., Luna-Barcenas, G., Alanis-Gómez, J. R., & Velázquez-Castillo, R. (2022). Improving the mechanical resistance of hydroxyapatite/chitosan composite materials made of nanofibers with crystalline preferential orientation. Materials, 15(13), 4718. doi:https://doi.org/10.3390/ma15134718
Amalia, B., Imawan, C., & Listyarini, A. (2018, October). Effect of nanofibril cellulose isolated from pineapple leaf on the mechanical properties of chitosan film. In AIP Conference Proceedings (Vol. 2023, No. 1, p. 020034). AIP Publishing LLC. doi:https://doi.org/10.1063/1.5064031
Bi, S., Wang, P., Hu, S., Li, S., Pang, J., Zhou, Z., ... & Chen, X. (2019). Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate polymers, 224, 115176. doi:https://doi.org/10.1016/j.carbpol.2019.115176
Chen, N., Wei, S., Shi, B., Yan, R., Li, X., & Zhan, T. (2021). Investigating the electromagnetic wave-absorbing capacity and mechanical properties of flexible radar-absorbing knitted compound materials. Journal of Industrial Textiles, 51(3), 343-361. doi:https://doi.org/10.1177/1528083719877006
Du, Y. (2022). Advances in carbon-based microwave absorbing materials. Materials, 15(4), 1359. doi:https://doi.org/10.3390/ma15041359
Hadi, F.B., & Farhan, A.J. (2025). Study of structural, mechanical and thermal properties of chitosan/PVA blend by casting method in different proportions. Experimental and Theoretical NANOTECHNOLOGY, 9(1), 167-178. doi:https://doi.org/10.56053/9.S.167
He, S., Hu, J., Chen, J., & Xi, Q. (2024, July). Study on the relationship between reflectivity and thickness of radar-absorbing material. In Journal of Physics: Conference Series (Vol. 2808, No. 1, p. 012084). IOP Publishing. doi:https://doi.org/10.1088/1742-6596/2808/1/012084
He, S., Su, T., He, L., Chen, J., & Xia, L. (2023, March). Inversion of equivalent electromagnetic parameters of multilayer absorbing materials based on simulated annealing algorithm. In Journal of Physics: Conference Series (Vol. 2447, No. 1, p. 012006). IOP Publishing. doi:http://dx.doi.org/10.1088/1742-6596/2447/1/012006
Jahan, M., Inakpenu, R. O., Li, K., & Zhao, G. (2019). Enhancing the mechanical strength for a microwave absorption composite based on graphene nanoplatelet/epoxy with carbon fibers. Open Journal of Composite Materials, 9(02), 230. doi:http://dx.doi.org/10.4236/ojcm.2019.92013
Kruželák, J., Kvasni?áková, A., Hložeková, K., & Hudec, I. (2021). Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advance, 3, 123-172. doi:https://doi.org/10.1039/D0NA00760A
Li, N., Huang, G. W., Li, Y. Q., Xiao, H. M., Feng, Q. P., Hu, N., & Fu, S. Y. (2017). Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS applied materials & interfaces, 9(3), 2973-2983. doi:https://doi.org/10.1021/acsami.6b13142
Mishra, S. P., Nath, G., & Mishra, P. (2020). Ultrasonically synthesized dielectric microwave absorbing material from coconut coir dust. Waste and Biomass Valorization, 11(4), 1481-1490. doi:https://doi.org/10.1007/s12649-018-0478-4
Mutmainnah, M., Chadijah, S., & Rustiah, W. O. (2017). Hidroksiapatit dari tulang ikan tuna sirip kuning (tunnus albacores) dengan metode presipitasi. Al-Kimia, 5(2), 119-26. doi:http://dx.doi.org/10.24252/al-kimia.v5i2.3422
Pugar, D., Haramina, T., Leskovac, M., & ?urkovi?, L. (2024). Preparation and characterization of poly (vinyl-alcohol)/chitosan polymer blend films chemically crosslinked with glutaraldehyde: Mechanical and thermal investigations. Molecules, 29(24), 5914. doi:https://doi.org/10.3390/molecules29245914
Ramesan, M.T., Menon, S.S., Kalladi, A.J., Abdulla, A.C.L., & Bahuleyan, B. (2024). Hydroxyapatite nanoparticles reinforced polyvinyl alcohol/chitosan blend for optical and energy storage applications. Polymer Engineering & Science, 64(3), 1378-1390. doi:http://dx.doi.org/10.1002/pen.26623
Soares, B.G., Barra, G.M.O., & Indrusiak, T. (2021). Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference Shielding/Microwave Absorbing Materials—A Review. Journal of Composites Science, 5(7), 173. doi:https://doi.org/10.3390/jcs5070173
Sofyan, N., Sany, F. N., Yuwono, A. H., & Dhaneswara, D. (2017). Characteristics of mixed polyvinyl alcohol and chitosan obtained from shrimp shells and squid pens for electromagnetic wave absorber. Int. J. Eng. Technol.(IJET), 9, 2581-2586. doi:https://doi.org/10.21817/ijet/2017/v9i3/1709030057
Vagananthan, B., Lee, Y. S., You, K. Y., Gan, H. S., & Wee, F. H. (2022). Investigate the effect of dielectric Technol.(IJETproperties on microwave absorption of pyramidal microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 21, 328-336. doi:https://doi.org/10.1590/2179-10742022v21i2257631
Yang, Y., Liang, Z., Zhang, R., Zhou, S., Yang, H., Chen, Y., Zhang, J., Yin, H., & Yu, D. (2024). Research advances in superabsorbent polymers. Polymers, 16(4), 501. doi:https://doi.org/10.3390/polym16040501
Zhang, B., Wang, J., Su, X., Duan, H., Cai, H., Wang, J., & Huo, S. (2017). Enhanced microwave absorption properties of epoxy composites containing graphene decorated with core–shell Fe3O4@ polypyrrole nanoparticles. Journal of Materials Science: Materials in Electronics, 28(16), 12122-12131. doi:https://doi.org/10.1007/s10854-017-7026-z
DOI: https://doi.org/10.14421/biomedich.2025.142.1413-1418
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fran Denis Sitohang, Muhammad Hibban Fadlurrohman Ayyasy, Esa Ghanim Fadhallah
Biology, Medicine, & Natural Product Chemistry |




